• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

藥品個體生體相等試驗設計之研究

吳昌霖 Unknown Date (has links)
原廠藥在專利期過後,任何藥廠皆可製造此種新藥,這種與原廠藥含有相同主成份的藥一般稱為屬類藥。對於新劑型或是屬類藥,在核准過程中並不需要提出與原廠藥相同的冗長臨床實驗過程,藥廠只需實驗證明屬類藥與原廠藥是生體相等(bioequivalence)即可。 目前證明新藥、舊藥之間是否生體相等的統計方法是比較兩考之生體可用相對值(relative bioavailability)平均數是否相等,意即所謂的 Average bioequivalence (ABE)實驗,但就實際觀點而言,兩種藥是否可互用是必須考慮到每個實驗個體間及個體內之差異,以及個體與藥劑間之交互作用,這就是所謂的 Individual bioequivalence (IBE)實驗。 美國食品藥物管理局(FDA)在1997年3月提出一個新的 IBE 決策準則,這個研究乃為探討新準則的特性,以及 ABE 方式的決策準則與 IBE 的決策準則二者間在同一試驗設計下是否有差異存在?何者的檢測能力較強?在何種情況下, ABE 與 IBE 的檢測效果是一樣的?不同的試驗設計是否會影響其檢測能力?整個研究過程中,我們是採用模擬資料的方式來對以上的問題加以探討。
2

平均生體相等與個體生體相等之比較研究 / A Comparison between Average Bioequivalence and Individual Biorquivalence

張永珍 Unknown Date (has links)
人的一生避免不了大小病痛,一但身體不適、罹患疾病,就須由醫師診斷、服用藥物;而藥物之生產首重有效與安全,要能有效的治療疾病,也要限制其毒性不超過安全限制以避免危害人體。   藥品之開發需要極為龐大之成本,故而各藥廠對於可以節省開發成本的藥品新劑型與學名藥之研究深感興趣;相對的,也就對於如何證明藥品新劑型(或學名藥)與原廠藥為生體相等可互用的方法多加探討。   美國FDA對於生體相等之評估準則,擬由過去的平均生體相等轉換成為個體生體相等評估準則;更改後的準則考慮面向較為完整周全,但是其應用卻須要更為繁複的試驗方式與更多的成本來配合,為了保留新準則之評估概念並簡化試驗與降低評估成本,本篇論文試圖找出新、舊評估準則之關聯,並以舊有準則為基礎做調整,盼能透過對舊準則之調整達到與新準則相類似之評估結果。如此一來,可沿用舊有試驗方法完成新準則所欲進行之評估,降低此評估研究之耗資,同時確保藥品新劑型(或學名藥)與原廠藥為生體相等可互用,具有相同療效與安全保證。
3

Assessing the Effect of Prior Distribution Assumption on the Variance Parameters in Evaluating Bioequivalence Trials

Ujamaa, Dawud A. 02 August 2006 (has links)
Bioequivalence determines if two drugs are alike. The three kinds of bioequivalence are Average, Population, and Individual Bioequivalence. These Bioequivalence criteria can be evaluated using aggregate and disaggregate methods. Considerable work assessing bioequivalence in a frequentist method exists, but the advantages of Bayesian methods for Bioequivalence have been recently explored. Variance parameters are essential to any of theses existing Bayesian Bioequivalence metrics. Usually, the prior distributions for model parameters use either informative priors or vague priors. The Bioequivalence inference may be sensitive to the prior distribution on the variances. Recently, there have been questions about the routine use of inverse gamma priors for variance parameters. In this paper we examine the effect that changing the prior distribution of the variance parameters has on Bayesian models for assessing Bioequivalence and the carry-over effect. We explore our method with some real data sets from the FDA.
4

在不同實驗設計下藥物個體生體相等性檢定力之比較

董雅萍 Unknown Date (has links)
傳統上,判定一種學名藥(generic drug)與原廠藥(innovator drug)是否具有生體相等性所常用的統計方法為:比較兩種藥物的生體可用相對值(relative bioavailability)的母體平均數是否相等,此即所謂的平均生體相等性(average bioequivalence)。然而就兩種藥物可互用的觀點而言,似乎更需要考慮的是每位受測個體在服用藥物後,不同藥物在個體內反應的差異性,因此 Anderson and Hauck (1990)提出個體生體相等性(individual bioequivalence)的觀點。 本文採 Schall (1995)所建議的判定準則來作為評估一種學名藥與原廠藥是否具有個體生體相等性的依據。內容重點為透過模擬(simulation)實驗的方式,對判定藥物為個體生體相等性的檢定力(power)作一評比,研究的項目有:(1)檢定力在不同交叉實驗設計(crossover design)下表現的異同;(2)檢定力在不同參數組合情況下表現的趨勢;(3)樣本數(sample size)對檢定力的影響。 / Conventionally, that a generic drug and an innovator drug are regarded as having the same treatment effects is based on the concept of average bioequivalence,i.e., that average responses between individuals on the two formulations are similar. Anderson and Hauck (1990) argued that it was not sufficient to expect that an individual patient would response similarly to the two formulations. The thought has received a lot of attention lately, and quite a few methods have been proposed to deal with the issue of the individual bioequivalence. According to the "unified" approach proposes by Schall (1995), a simulation study on power to declare bioequivalence and coverage probability of confidence intervals is carried out here to compare their performance under different experimental designs.

Page generated in 0.0617 seconds