This thesis was conducted in cooperation with the Swedish bank SEB, who expressed interest in getting an increased understanding of how the marketing measure Customer Lifetime Value could be implemented and used in the retail banking industry. Accordingly, the purpose of this thesis was to provide insight into how Customer Lifetime Value could be modelled in an appropriate way in the retail banking industry and provide an increased understanding of necessary considerations for the modelling process. First, performance requirements for models of Customer Lifetime Value in the retail banking industry were identified through literary analysis and interviews with SEB. These requirements were then used to evaluate six general modelling approaches: RFM, Probability, Econometric, Persistance, Diffusion/Growth and Computer science. Based on the evaluation, the computer science approach and the econometric approach were identified as suitable for further investigation. This was achieved by implementing and analysing the performance of two models chosen as examples of respective approach. Specifically, a computer science model based on the \textit{random forest} algorithm and an econometric model based on \textit{Markov chains} were chosen. The results indicate that both approaches could be appropriate for the retail banking industry, but that an econometric approach could have the advantage of higher interpretability while a computer science approach can have the advantage of higher predictive accuracy. In conclusion, the results indicate that the specific considerations and performance requirements for models of Customer Lifetime Value in the retail banking context should be based on a specific use case and area of business application. However, the discussions, considerations and examples of implementations provided in this thesis could serve as a foundation for future research and model development in this context. / Detta arbete genomfördes i samarbete med SEB, som uttryckt ett intresse för att öka sin kunskap kring hur marknadsföringsmåttet Customer Lifetime Value skulle kunna implementeras och användas i retail banking-branschen. Syftet med denna uppsats var följaktligen att ge en ökad förståelse för vad som är en lämplig modell av Customer Lifetime Value i branschen, samt ge en ökad förståelse för nödvändiga hänsynstaganden i modelleringsprocessen. Detta gjordes genom att först identifiera existerande modellkrav genom litteraturanalyys och intervjuer med SEB. Kraven användes sedan för att utvärdera sex generella modelltyper: RFM, Probability, Econometric, Persistance, Diffusion/Growth and Computer science. Baserat på utvärderingen identifierades Econometric och Computer science som lämpliga modelltyper för vidare undersökning, vilken gjordes genom att implementera en modell från respektive modelltyp. Specifikt valdes en Computer science-metod baserad på algoritmen random forest och en Econometric-metod baserad på Markovkedjor. Resultaten indikerade att båda modelltyper är lämpliga för implementering i retail banking-branschen, men att en Econometric-metod skulle kunna ha större tolkbarhet och att en Computer science-metod skulle kunna ha bättre precision. Sammanfattningsvis konstateras att hänsynstaganden och modellkrav på modeller av Customer Lifetime Value i retail banking-branschen bör utformas utifrån det specifika tilltänkta användningsområdet. De diskussioner, hänsynstaganden och implementationsexempel som presenteras i detta arbete kan dock fungera som grund för vidare forskning och modellutveckling i kontexten.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-312355 |
Date | January 2021 |
Creators | Völcker, Max, Stenfelt, Carl |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:331 |
Page generated in 0.0023 seconds