A cell that senses signals from its environment uses proteins for signal transduction via post translational modifications (PTMs) and protein- protein interactions (PPIs) from cell membrane into the nucleus where genes controlling cell proliferation, differentiation and apoptosis can be turned on or off, i.e. changing the phenotype or fate of the cell. Aberrations within such proteins are prone to cause diseases, such as cancer. Therefore, it is important so study aberrant signaling to be able to understand and treat diseases. In this thesis, signaling aberrations of PTMs and PPIs were analyzed with the use of the in situ proximity ligation assay (in situ PLA), and the thesis also contain method development of rolling circle amplification (RCA), which is the method used for signal amplification of in situ PLA reaction products. Paper I considers the integrity of RCA products. Here, the aim was to generate a smaller and more compact RCA product, for more accurate either visual or automated analysis. This was achieved with the use of an additional so called compaction oligonucleotide that during RCA was able to bind and pull segments of RCA products closer together. The compaction oligonucleotide served to increase the signal to noise ratio and decrease the number of false positive signals. The crosstalk between the Hippo and TGFβ signaling pathways were studied in paper II. Activity of the Hippo signaling pathway is regulated by cell density sensing and tissue control. We found differences in amounts and localization of interactions between the effector proteins of the two pathways depending on cell density and TGFβ stimulation. In paper III the NF-кB signaling pathway constitutively activated in chronic lymphocytic leukemia (CLL) was studied. A 4 base-pair frameshift deletion within the NFKBIE gene, which encodes the negative regulator IкBε, was found among 13 of a total 315 cases by the use of targeted deep sequencing. We found reduced levels of IкBε protein, decreased p65 inhibition, and increased phosphorylation, along with increased nuclear localization of p65 in NFKBIE deleted cases compared to healthy cases. Crosstalk between the Hippo and Wnt signaling pathway are studied within paper IV. Here, we found differences in cellular localization of TAZ/β-catenin interactions depending on colon cancer tumor stage and by further investigate Hippo/WNT crosstalk in cell line model systems we found an increase of complex formations involved in the crosstalk in sparse growing HEK293 cells compared to dense growing cells. Also, active WNT3a signaling was affected by cell density. Since cell density showed to have a big effect on Hippo/WNT crosstalk we continued to investigated the effect of E-cadherin, which has a function in cell junctions and maintenance of epithelial integrity on Hippo/WNT crosstalk. Interestingly, we found that E-cadherin is likely to regulate Hippo/WNT crosstalk.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-281716 |
Date | January 2016 |
Creators | Arngården, Linda |
Publisher | Uppsala universitet, Molekylära verktyg, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1202 |
Page generated in 0.0023 seconds