Dans ce manuscrit nous proposons une architecture neuronale d'inspiration corticale, capable de développer un traitement émergent de type auto-organisation. Afin d'implémenter cette architecture neuronale de manière distribuée, nous utilisons le modèle de champs neuronaux dynamiques, un formalisme mathématique générique conçu pour modéliser la compétition des activités neuronales au niveau cortical mésoscopique. Pour analyser en détail les propriétés dynamiques des modèles de référence de ce formalisme, nous proposons un critère formel et un instrument d'évaluation, capable d'examiner et de quantifier le comportement dynamique d'un champ neuronal quelconque dans différents contextes de stimulation. Si cet instrument nous permet de mettre en évidence les avantages pratiques de ces modèles, il nous révèle aussi l'incapacité de ces modèles à conduire l'implantation des processus d'auto-organisation (implémenté par l'architecture décrite) vers des résultats satisfaisants. Ces résultats nous amènent à proposer une alternative aux modèles classiques de champs, basée sur un mécanisme de rétro-inhibition, qui implémente un processus local de régulation neuronale. Grâce à ce mécanisme, le nouveau modèle de champ réussit à implémenter avec succès le processus d'auto-organisation décrit par l'architecture proposée d'inspiration corticale. De plus, une analyse détaillée confirme que ce formalisme garde les caractéristiques dynamiques exhibées par les modèles classiques de champs neuronaux. Ces résultats ouvrent la perspective de développement des architectures de calcul neuronal de traitement d'information pour la conception des solutions logicielles ou robotiques bio-inspirées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00606926 |
Date | 30 June 2011 |
Creators | Alecu, Lucian |
Publisher | Université Henri Poincaré - Nancy I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds