Dans cette thèse, on construit des systèmes d’Euler à partir des unités (conjecturales) de Stark et celles de Rubin-Stark d’un corps de nombres K, pour décrire l’idéal caractéristique du X-quotient du module d’Iwasawa standard X∞ pour certains caractères p-adiques irréductibles X. Ici X∞ est le groupe de Galois de la pro-p-extension abélienne non ramifiée maximale de K∞, où K∞ est une Zp-extension adéquate de K. Plus précisément, on démontre des résultats de divisibilité formulée par la conjecture principale de la théorie d’Iwasawa. Nos démonstrations reposent essentiellement sur la théorie des systèmes d’Euler. / In this thesis, we construct Euler systems coming from the (conjectural) Stark units and those of Rubin-Stark of a number field K, to describe the characteristic ideal of the X-quotient of the standard Iwasawa module X∞, for some p-adic irreducible characters X. Here X∞ is the Galois group of the maximal unramified abelian pro-p-extension of K∞, where K∞ is an adequate Zp-extension of K. Precisely, we demonstrate a divisibility results formulated by the main conjecture of Iwasawa theory. Our demonstrations essentially are based on the theory of Euler systems.
Identifer | oai:union.ndltd.org:theses.fr/2017UBFCD005 |
Date | 26 January 2017 |
Creators | Mazigh, Youness |
Contributors | Bourgogne Franche-Comté, Oukhaba, Hassan, Assim, Jilali |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds