Return to search

Regional climate variability: concepts, changes, consequences

Europa erlebte in den letzten 20 Jahren einige sehr heiße und trockene Sommer mit regionalen Rekordwerten heißer Temperaturen oder geringer Niederschlagssummen. In anderen Jahren führten Starkregen zu Überflutungen unterschiedlichen räumlichen Ausmaßes. Da solche Extremereignisse mit vielfältigen negativen Auswirkungen auf die menschliche Gesellschaft, natürliche Ökosysteme und verschiedene Wirtschaftssektoren verbunden sind, ist die langzeitliche Veränderung in ihrem Auftreten im Rahmen der globalen Erwärmung von großer Bedeutung.
Konzepte: Maßgeblich für die Qualität von Klimawandel(folgen)studien ist die Verfügbarkeit und Qualität von Daten. Daher werden Konzepte für die Sicherstellung einer zuverlässigen und vergleichbaren Datenbasis entwickelt. Für die Beschreibung der Eigenschaften eines bestimmten Ereignisses existiert eine Vielzahl an Definitionen und Indizes, was zu unterschiedlichen Ergebnissen von Studien führen kann, welche die zeitlichen Veränderungen der Charakteristik solcher Ereignisse analysieren. Die Integration einer Reihe von Indizes in einen aggregierten Index ermöglicht eine robustere Bewertung der Klimabedingungen und Trends. Die Vergleichbarkeit von Klimafolgenbewertungen verlangt zudem die Verwendung eines gemeinsamen Analyserahmens sowie abgestimmter Datensätze (Beobachtungsdaten, Klimaprojektionen) und Methoden (z.B. Untersuchungszeiträume, Ensemble-Ansatz, Qualitätsbewertung, Korrekturalgorithmen, Impactmodelle und -indizes, Elemente der Klimafolgen- oder Risikoanalyse).
Trends: Sommerliche Trockenheit hat über weiten Teilen Europas – mit Ausnahme des Nordens – zugenommen. Besonders stark zugenommen haben die Dürrebedingungen im Sommerhalbjahr für Indizes, welche die Evapotranspiration einbinden. Der reine Fokus auf den Niederschlag zur Bewertung von Dürre in verschiedenen Speichern des Wasserkreislaufs ist unzureichend. Neben dieser beobachteten Zunahme in der Sommertrockenheit, ist auch für die Intensität von Starkniederschlagsereignissen und ihrem Anteil am Gesamtniederschlag ein Anstieg über Europa zu beobachten. Verschiedene Stationen in Mitteleuropa zeigen für das Sommerhalbjahr gleichzeitige Anstiege in den Dürrebedingungen und Starkniederschlägen, was die mit solchen Niederschlagsextremen verbundenen Folgen und Risiken erhöht.
Folgen: Viele Sektoren sind durch die Folgen des Klimawandels und extreme Wettereignisse negativ betroffen, so auch das Verkehrssystem. Dessen Verfügbarkeit und Leistungsfähigkeit ist von hoher Bedeutung für die Gesellschaft (Mobilität) und Wirtschaft (Waren, Transportketten). Extreme Wettereignisse wie Hitzewellen, Überschwemmungen, Dürren, Stürme und Sturmfluten können Unfälle und Staus verursachen, die Infrastrukturen beschädigen und damit Transportketten unterbrechen sowie zu Verspätungen und Ausfällen führen. Die Verkehrsträger sind dabei in unterschiedlicher Weise und Intensität betroffen. Um die Klimawandelfolgen für das Bundesverkehrssystem zu bewerten und Anpassungsbedarfe zu priorisieren wurde ein methodischer Rahmen für die Durchführung von Klimawirkungsanalysen entwickelt. Ergänzt werden diese nationalen Analysen durch Klimafolgenstudien für die UNECE-Region (UNECE: Wirtschaftskommission für Europa der Vereinten Nationen). Zielgerichtete Klimadienstleistungen, welche die Bedarfe der Anwendenden integrieren, sind eine Grundvoraussetzung für die Entwicklung praktikabler Anpassungsoptionen.:Abstract 1
Zusammenfassung 2
1. Research topic and questions addressed 3
2. Outline and structure of this thesis 6
3. Concepts – How to evaluate changes in heat, drought and wetness? 11
3.1 How to define drought? 11
3.2 How to measure changes in (extreme) temperature and precipitation? 11
3.2.1 Applying established climate indices 11
3.2.2 Developing new indices to measure drought and wetness 12
3.2.3 Assessing extreme events and their impacts 14
3.3 How to ensure good quality climate data sets? 15
3.3.1 Separating climate variability from changes in non-climatic parameters 15
3.3.2 Regionalizing climate information 15
3.3.3 Adjusting biases in climate projections 16
3.4 How to ensure comparable results of climate impact assessments? 17
3.4.1 Agreeing on common assumptions and scenarios 17
3.4.2 Applying an ensemble analysis approach 17
3.4.3 Implementing a common analysis framework for impact assessment 18
4. Changes – Which variations are seen in the regional climate? 20
4.1 Variations and changes in the average climate – temperature and precipitation 20
4.1.1 Changes in wet and dry periods over Europe 20
4.1.2 Observed and projected temperature and precipitation trends over Germany 21
4.1.3 Observed climatic changes in North-eastern Brazil (NEB) 21
4.1.4 Observed precipitation variations in the Palestinian territories and surrounding areas 22
4.2 Extreme weather and climate events: spatio-temporal variations and trends 22
4.2.1 Increases in temperature extremes and heatwaves 22
4.2.2 Characteristics of and changes in heavy precipitation 23
4.2.3 Temporal variations in meteorological drought conditions 26
4.2.4 Drought and heavy precipitation 28
4.3 Characterising selected record hot and dry summers 30
4.3.1 The five record drought summers in Europe – 1947, 2018, 2003,
1921 and 1911 30
4.3.2 The summer of 2018 31
4.3.3 The summer of 2015 32
4.3.4 Recent hot and dry summers in Germany in comparison to climate projections 33
5. Consequences – Which climate impacts do we have to expect and how to adapt to them? The case of the transport system 35
5.1 Relevance of climate change considerations for the transport system 35
5.2 Networks supporting the development of climate resilient transport systems 35
5.2.1 BMDV Network of Experts on Climate Change Impacts and Adaptation 36
5.2.2 DAS core service “climate and water” 37
5.2.3 UNECE Group of Experts on Assessment of Climate Change Impacts
and Adaptation for Inland Transport 38
5.3 Climate change impact analysis for the transportation sector 39
5.3.1 Methodology of the integrated climate impact assessment 39
5.3.2 Exemplary results of the exposure analysis 40
5.3.3 Integrated climate impact assessment 40
5.4 Stress testing the transport system 41
5.4.1 The stress test methodology 41
5.4.2 Exemplary results of the traffic simulations 41
5.5 Developing an adaptation framework and specific measures 42
5.5.1 Background and classification of adaptation measures 42
5.5.2 Information and consultation services 42
5.5.3 Reviewing and revising technical guidelines and standards 43
5.5.4 Structural adaptation measures 43
5.5.5 Adapting management practices of transportation infrastructure 43
5.5.6 Adapting the operative management of traffic flows 44
5.5.7 Survey results on suitable adaptation measures 44
6. Conclusions 45
6.1 Concepts 45
6.2 Changes 45
6.3 Consequences 46
7. References 48 / Over the last 20 years, some very hot and dry summers affected Europe, regionally resulting in record breaking high temperature or low precipitation values. In other years, torrential rains led to flood events at different spatial scales. Long-term changes of such extreme events within a warming world are of great relevance, as they are connected with manifold negative impacts on human society, natural ecosystems and diverse economic sectors.
Concepts: The quality of climate change (impact) studies is often hampered by availability and quality of datasets. Thus, concepts for securing reliable and comparable data are developed and applied. For the description of the characteristics of a specific event a vast number of definitions and indices exists. Therefore, results on the temporal changes of event characteristics may differ between studies. By integrating a number of indices into an aggregated index, a more robust evaluation of the climate conditions and trends is facilitated. Furthermore, comparable climate impact assessments demand a common analysis framework with agreements on the data bases (observational data and climate projections) and methodologies (e.g., study periods, ensemble approach, quality assessment, correction algorithms, climate impact models and indices, elements considered in the impact or risk analysis).
Changes: Summer drought conditions increased over most of Europe, except for some stations in northern Europe. Thereby, the observed increase in drought conditions during the warm part of the year is particularly pronounced for indices integrating evapotranspiration in their definition. Purely focussing on precipitation to evaluate drought conditions in the different water reservoirs does not suffice any longer. While observing increases in summer drought, the intensity of heavy precipitation events as well as their contribution to total precipitation show a positive trend over Europe, too. Several stations in Central Europe show increasing drought conditions and increasing heavy precipitation events during the summer half year at the same time, which increases the risks connected with precipitation extremes.
Consequences: Climate change impacts on the transport system are studied exemplarily for the many sectors that are affected negatively by the projected changes in climate and extreme weather events. The availability and performance of the transport system are of high importance for the society (mobility) and economy (goods, transport chains). Extreme weather events such as heatwaves, flooding, droughts, and storm surges might 1) cause accidents and congestion, 2) severely damage to infrastructures and disrupt transport chains, and 3) result in delays and cancellations. Different modes of transport are affected by climate change in different ways and with different intensity. A climate impact assessment framework was defined and tested for the German Federal transport system to support the prioritization of adaptation options. Climate change impact studies for the UNECE-region (United Nations Economic Commission for Europe) complement these Federal analyses. It is shown that tar-geted climate services that integrate user requirements are key in developing feasible adaptation options.:Abstract 1
Zusammenfassung 2
1. Research topic and questions addressed 3
2. Outline and structure of this thesis 6
3. Concepts – How to evaluate changes in heat, drought and wetness? 11
3.1 How to define drought? 11
3.2 How to measure changes in (extreme) temperature and precipitation? 11
3.2.1 Applying established climate indices 11
3.2.2 Developing new indices to measure drought and wetness 12
3.2.3 Assessing extreme events and their impacts 14
3.3 How to ensure good quality climate data sets? 15
3.3.1 Separating climate variability from changes in non-climatic parameters 15
3.3.2 Regionalizing climate information 15
3.3.3 Adjusting biases in climate projections 16
3.4 How to ensure comparable results of climate impact assessments? 17
3.4.1 Agreeing on common assumptions and scenarios 17
3.4.2 Applying an ensemble analysis approach 17
3.4.3 Implementing a common analysis framework for impact assessment 18
4. Changes – Which variations are seen in the regional climate? 20
4.1 Variations and changes in the average climate – temperature and precipitation 20
4.1.1 Changes in wet and dry periods over Europe 20
4.1.2 Observed and projected temperature and precipitation trends over Germany 21
4.1.3 Observed climatic changes in North-eastern Brazil (NEB) 21
4.1.4 Observed precipitation variations in the Palestinian territories and surrounding areas 22
4.2 Extreme weather and climate events: spatio-temporal variations and trends 22
4.2.1 Increases in temperature extremes and heatwaves 22
4.2.2 Characteristics of and changes in heavy precipitation 23
4.2.3 Temporal variations in meteorological drought conditions 26
4.2.4 Drought and heavy precipitation 28
4.3 Characterising selected record hot and dry summers 30
4.3.1 The five record drought summers in Europe – 1947, 2018, 2003,
1921 and 1911 30
4.3.2 The summer of 2018 31
4.3.3 The summer of 2015 32
4.3.4 Recent hot and dry summers in Germany in comparison to climate projections 33
5. Consequences – Which climate impacts do we have to expect and how to adapt to them? The case of the transport system 35
5.1 Relevance of climate change considerations for the transport system 35
5.2 Networks supporting the development of climate resilient transport systems 35
5.2.1 BMDV Network of Experts on Climate Change Impacts and Adaptation 36
5.2.2 DAS core service “climate and water” 37
5.2.3 UNECE Group of Experts on Assessment of Climate Change Impacts
and Adaptation for Inland Transport 38
5.3 Climate change impact analysis for the transportation sector 39
5.3.1 Methodology of the integrated climate impact assessment 39
5.3.2 Exemplary results of the exposure analysis 40
5.3.3 Integrated climate impact assessment 40
5.4 Stress testing the transport system 41
5.4.1 The stress test methodology 41
5.4.2 Exemplary results of the traffic simulations 41
5.5 Developing an adaptation framework and specific measures 42
5.5.1 Background and classification of adaptation measures 42
5.5.2 Information and consultation services 42
5.5.3 Reviewing and revising technical guidelines and standards 43
5.5.4 Structural adaptation measures 43
5.5.5 Adapting management practices of transportation infrastructure 43
5.5.6 Adapting the operative management of traffic flows 44
5.5.7 Survey results on suitable adaptation measures 44
6. Conclusions 45
6.1 Concepts 45
6.2 Changes 45
6.3 Consequences 46
7. References 48

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89032
Date16 January 2024
CreatorsHänsel, Stephanie
ContributorsMatschullat, Jörg, Ustrnul, Zbigniew, Thieken, Annegret, Technische Universität Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish, German
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0039 seconds