Source d'énergie renouvelable et non polluante, le biohydrogène connaît un intérêt croissant. En culture continue sur glucose, la productivité d'hydrogène la plus élevée est réalisée par la bactérie anaérobie Clostridium acetobutylicum avec 2,4 litres d'hydrogène produit l-1 h-1. Cette production d'hydrogène est catalysée par la [FeFe]-hydrogénase HydA. Pour comprendre et améliorer les capacités de ce micro-organisme pour la production d'hydrogène, nous avons voulu caractériser les relations structure-fonctions de HydA avec ses partenaires d'oxydo-réduction. Par homologie avec l'hydrogénase à fer I de Clostridium pasteurianum, les centres [4Fe-4S] FS4C et [2Fe-2S] FS2, situés en surface de la protéine, pourraient être impliqués dans le transfert inter-moléculaire d'électrons entre HydA et ses partenaires d'oxydoréduction. Notre objectif a alors été de déterminer l'implication de FS4C et FS2 dans ce transfert. Pour cela, des mutations par substitutions d'acides aminés et par délétions de domaines ont été effectuées au niveau de FS4C et FS2. Pour palier des problèmes d'instabilité des hydrogénases à fer native et modifiées, le protocole de purification a été amélioré. L'hydrogénase native a nettement été stabilisée, mais l'instabilité persistante des hydrogénases modifiées est restée une limitation importante pour leur caractérisation catalytique. La perte d'activité des hydrogénases modifiées a pu être corrélée à une perte importante de fonctionnalité de leur site actif et à un nombre d'atomes de fer incorporés inférieur à la valeur théorique. Les partenaires physiologiques d'oxydo-réduction de HydA chez C. acetobutylicum, la ferrédoxine CAC0303 et la flavodoxine, ont été purifiés. Le profil catalytique complet et les paramètres cinétiques des activités de consommation et de production d'hydrogène de HydA native avec différents partenaires d'oxydo-réduction ont été déterminés. L'amélioration du protocole de purification a permis d'augmenter significativement les activités de consommation et production d'hydrogène. Nous avons confirmé la préférence in vitro de HydA à catalyser la consommation de l'hydrogène par rapport à la production. Une valeur très élevée de kcat a été obtenue avec le substrat artificiel, méthyl viologène, en consommation d'hydrogène. Cela semble indiquer que le méthyl viologène pourrait interagir plus ou moins directement avec le site actif de l'enzyme, en évitant le transfert intramoléculaire d'électrons. Des efficacités catalytiques élevées de consommation et de production de l'hydrogène ont été obtenues avec le méthyl viologène (sauf sous sa forme réduite), la ferrédoxine et la flavodoxine. Ce résultat reflète le haut potentiel de HydA pour les réactions liées à l'hydrogène, potentiel conservé aussi bien pour ses partenaires redox physiologiques qu'artificiel. Ainsi, en condition de croissance en carence en fer, la substitution de la ferrédoxine par la flavodoxine ne serait pas une limitation pour l'activité hydrogénase in vivo.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00435141 |
Date | 05 November 2007 |
Creators | Demuez, Marie |
Publisher | INSA de Toulouse |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds