Return to search

Magnetisierungsmessungen in hohen magnetischen Impulsfeldern

In der vorliegenden Arbeit wurden vor allem das Auftreten und der Mechanismus von feldinduzierten Übergängen und der damit verbundenen kritischen Felder untersucht. Die verwendete Magnetisierungsmessmethode ist auf die bestehende Impulsfeldanlage des IFW Dresden abgestimmt. Die Magnetisierung in Feldern bis zu 48 T wurde gemessen. Erstmals wurde für Sm2Fe17N3 der Anisotropiekoeffizient aus der Kombination der Messung des Austauschfeldes mittels inelastischer Neutronenstreuung und der Messung der Anisotropiekonstanten K1 am gleichen Material bestimmt. Für den führenden Anisotropiekoeffizienten konnte mit K1 von rund 13 MJ/m³ der Wert A20<r²> = -28 meV bestimmt werden. Der in SmCo2,5Cu2,5 und SmCo2Cu3 beobachtete Hochfeldübergang konnte mit der Mikrostruktur verknüpft werden. Die laminare Mikrostruktur bestehend aus Phasen mit unterschiedlichem Sm-Anteil ist eine notwendige Bedingung für das Auftreten des Übergangs. Das Koerzitivfeld steigt mit dem Kupfergehalt und erreicht bei tiefen Temperaturen sehr hohe Werte. Das Koerzitivfeld und das Übergangsfeld zeigen eine große magnetische Viskosität. In DyFe6Al6 wird das Verschwinden der spontanen Magnetisierung bei tiefen Temperaturen durch starke antiferromagnetische Kopplungen verursacht. Durch ein feldinduziertes magnetisches Moment an einem ungeordneten Kristallgitterplatz könnte der magnetische Übergang bei tiefen Temperaturen erklärt werden. An hexagonalem DyMn6Ge6 wurde erstmals der Temperaturverlauf des Übergangsfeldes zur gekanteten antiferromagnetischen Struktur gemessen. Oberhalb von 100 K ruft das angelegte Feld den Übergang von der helimagnetischen zu einer Fächerstruktur hervor. Bei tiefen Temperaturen tritt ein Spinflop-Übergang auf, der durch die magnetische Anisotropie des Dysprosiumions unterstützt wird. Bei magnetokalorischen Materialien zeigt sich eine Abhängigkeit der gemessenen Magnetisierung von der Feldänderungsrate. Dies lässt sich qualitativ auf die Messbedingungen zurückführen: So herrschen bei Impulsfeldmessungen adiabatische Bedingungen, während bei statischen Messungen isotherme Verhältnisse vorliegen. Neben herkömmlichen magnetischen Verbindungen wurden auch stark korrelierte Elektronensysteme untersucht. Der gefundene Magnetisierungsübergang bei 43 T in CeNi2Ge2 lässt sich auf das Unterdrücken des Kondoeffekts und das Aufbrechen der antiferromagnetischen Struktur zurückführen. Darüber hinaus wurden Magnetisierungsmessungen an Hochtemperatursupraleitern durchgeführt. Die Messungen im Impulsfeld sind ein Beitrag zur Bestimmung des Phasendiagramms von schmelztexturiertem YBa2Cu3O7-d. Das Irreversibilitätsfeld Hirr konnte an massiven Proben bis zu tiefen Temperaturen bestimmt werden. Hirr(T) zeigt einen unerwarteten linearen Anstieg bis zu tiefen Temperaturen. Aufgrund der hohen Feldänderungsraten und großen Unterschiede von Ummagnetisierungsprozessen in magnetischen Materialien gibt es derzeit keine einheitliche Beschreibung der magnetischen Viskosität für Feldänderungsraten im Bereich von 0,001 bis zu 1000 T/s. Durch die Messung im Impulsfeld konnte die Größenordnung der magnetischen Viskosität in nanokristallinem Bariumferrit bestimmt werden. Magnetisierungsmessungen im Impulsfeld stellen sowohl durch das hohe Magnetfeld als auch aufgrund der hohen bzw. variierenden Feldänderungsrate ein sehr nützliches Instrument zur Untersuchung feld- und zeitabhängiger Eigenschaften von Festkörpern dar. / In this work, the occurrence and the mechanism of field induced transitions and the related critical fields were investigated. The way of measuring the magnetisation was designed for the existing pulsed field device of the IFW Dresden. The magnetisation was measured in fields up to 48 T. For the first time, the anisotropy coefficient of Sm2Fe17N3 was obtained in the combined measurement of the exchange field via inelastic neutron scattering and the measurement of the anisotropy constant K1 for the same material. For the leading anisotropy coefficient, a value of A20<r²> = -28 meV was found using K1 of about 13 MJ/m³. It was shown that the observed high field transition in SmCo2.5Cu2.5 and SmCo2Cu3 is connected with the microstructure. The laminar microstructure consisting of phases with different Sm-content is a necessary precondition for the occurrence of the transition. The coercivity increases with the Cu-content and reaches high values at low temperature. The coercivity and the transition field show big magnetic viscosity. In DyFe6Al6, the disappearance of the spontaneous magnetisation at low temperature is caused by a strong antiferromagnetic coupling. The magnetic transition at low temperature could be explained by a field induced magnetic moment on a disordered crystal site. For the hexagonal DyMn6Ge6, the temperature dependence of the transition field towards the canted antiferromagnetic structure was measured for the first time. Above 100 K, the applied field causes the transition from the helimagnetic to the fan structure. At low temperature, a spin flop transition occurs, which is supported by the magnetic anisotropy of the Dy-ion. The magnetisation of magnetocaloric materials exhibits a dependence of the field changing rate. This can be explained qualitatively by the measurement condition: The pulsed field measurement is adiabatic, whereas during static measurements, the condition is isothermal. Besides common magnetic compounds, highly correlated electron systems were also investigated. The magnetic transition at 43 T in CeNi2Ge2 can be explained by the suppression of the Kondo effect and the breaking up of the antiferromagnetic structure. Furthermore, magnetisation of high temperature superconductors was measured. The measurements in the pulsed field are a contribution to the determination of the phase diagram of melt textured YBa2Cu3O7-d. The irreversibility field Hirr was measured for bulk samples down to low temperature. Hirr(T) shows an unexpected linear increase down to low temperature. Because of the high field-changing rates and the big differences of magnetisation processes in magnetic materials, there is no uniform description of the magnetic viscosity for field changing rates in the magnitude from 0,001 up to 1000 T/s. By the measurement in the pulsed field, the magnitude of the magnetic viscosity of nanocrystalline barium ferrite was determined. Magnetisation measurement in pulsed fields is a very useful instrument to investigate field and time dependent properties of solids due to their high magnetic field and their high and varying field changing rate.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1155114785406-30409
Date09 August 2006
CreatorsKerschl, Peter
ContributorsTechnische Universität Dresden, Physik, Technische Universität Dresden, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW Dresden), Prof. Dr. Ludwig Schultz, Prof. Dr. Ludwig Schultz, a.o. Univ.-Prof. Dr. Roland Grössinger, Prof. Dr. Noboru Miura
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0031 seconds