Return to search

Codimensões e cocaracteres de PI-Álgebras. / Codimensions and cocaracteres of PI-Algebras.

Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-27T15:29:31Z
No. of bitstreams: 1
ANTONIO IGOR SILVA DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2011..pdf: 599013 bytes, checksum: 2ae31549fdd89221db237ef278b5a688 (MD5) / Made available in DSpace on 2018-07-27T15:29:31Z (GMT). No. of bitstreams: 1
ANTONIO IGOR SILVA DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2011..pdf: 599013 bytes, checksum: 2ae31549fdd89221db237ef278b5a688 (MD5)
Previous issue date: 2011-09 / Capes / As ideias de codimensões e cocaracteres de uma PI-álgebra são de grande importância
e são centrais nas aplicações das representações dos grupos simétricos à PIteoria
(teoria das identidades polinomiais). Os conceitos de codimensão e cocaracter
começaram a ser estudados em 1972 por Amitai Regev em seu importante trabalho sobre
identidades polinomiais do produto tensorial de PI-álgebras. Ao longo das últimas
décadas muitos resultados importantes surgiram com o uso das representações e dos
métodos assintóticos na PI-teoria. Neste trabalho apresentaremos inicialmente ideias
e resultados básicos da Teoria de Young sobre as representações dos grupos simétricos.
De posse desses resultados, estudaremos as sequências limitadas de codimensões e as
sequências de cocaracteres de álgebras que satisfazem alguma identidade de Capelli.
Apresentaremos também os cálculos das codimensões e dos cocaracteres da álgebra de
Grassmann. / The ideas of codimensions and cocharacters of a PI-algebra are of great and central
importance in the applications of representations of symmetric groups to PI-theory
(theory of the polynomial identities). The study of the concepts of codimensions and
cocharacters started in 1972 by Amitai Regev in his important work about polynomial
identities of the tensor product of PI-algebras. During the last decades many important
results arose with the use of representations and asymptotic methods in PI-theory. In
this work we will present firstly ideas and basic results in the Young’s theory about
the representations of symmetric groups. With these results we shall study the limited
sequences of codimensions and the cocharacter sequences of algebras that satisfy some
of the Capelli identity. It will also be presented the calculation of the codimensions
and cocharacters of the Grassmann Algebra.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:riufcg/1276
Date27 July 2018
CreatorsOLIVEIRA, Antonio Igor Silva de.
ContributorsBRANDÃO JÚNIOR, Antônio Pereira., GONÇALVES, Dimas José., SILVA, Diogo Diniz Pereira da Silva e.
PublisherUniversidade Federal de Campina Grande, PÓS-GRADUAÇÃO EM MATEMÁTICA, UFCG, Brasil, Centro de Ciências e Tecnologia - CCT
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca de Teses e Dissertações da UFCG, instname:Universidade Federal de Campina Grande, instacron:UFCG
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0047 seconds