• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatória das representações irredutíveis do grupo simétrico

Ferreira, Sarah Ribeiro de Jesus 13 August 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-20T13:36:29Z No. of bitstreams: 1 sarahribeirodejesusferreira.pdf: 854513 bytes, checksum: bdb519074051d0889c62002f16fe1a8e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-10-01T19:17:08Z (GMT) No. of bitstreams: 1 sarahribeirodejesusferreira.pdf: 854513 bytes, checksum: bdb519074051d0889c62002f16fe1a8e (MD5) / Made available in DSpace on 2018-10-01T19:17:08Z (GMT). No. of bitstreams: 1 sarahribeirodejesusferreira.pdf: 854513 bytes, checksum: bdb519074051d0889c62002f16fe1a8e (MD5) Previous issue date: 2018-08-13 / Nesse trabalho, apresentamos a teoria de representação básica do grupo simétrico e seus aspectos combinatórios. O objetivo principal desse trabalho é construir um conjunto completo de representações irredutíveis e não equivalentes do grupo simétrico, em termos da sua partição e conceitos combinatórios relacionados com o tableau de Young. Veremos que esse objeto combinatório nos fornecerá duas maneiras de descrever as representações irredutíveis do grupo simétrico, uma via politablóides e uma alternativa via idempotentes da álgebra de grupo, e que, na verdade, essas duas abordagens são isomorfas. Iremos abordar alguns resultados interessantes, como a regra de Young, a regra da ramificação e o algoritmo combinatório da correspondência de Robinson-Schensted. / In this work, we present the basic representation theory of the symmetric group and its combinatorial aspects. The main objective of this work is to construct a complete set of irreducible and inequivalent representations of the symmetric group, in terms of its partition and combinatorial concepts related to Young’s tableau. We will see that this combinatorial object will provide us two ways of describing the irreducible representations of the symmetric group, a politabloid pathway, and an alternative via idempotent group algebra, and that, in fact, these two approaches are isomorphic. We will cover some interesting results, such as the Young’s rule, the branching rule, and the Robinson-Schensted’s combinatorial matching algorithm.
2

Codimensões e cocaracteres de PI-Álgebras. / Codimensions and cocaracteres of PI-Algebras.

OLIVEIRA, Antonio Igor Silva de. 27 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-27T15:29:31Z No. of bitstreams: 1 ANTONIO IGOR SILVA DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2011..pdf: 599013 bytes, checksum: 2ae31549fdd89221db237ef278b5a688 (MD5) / Made available in DSpace on 2018-07-27T15:29:31Z (GMT). No. of bitstreams: 1 ANTONIO IGOR SILVA DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2011..pdf: 599013 bytes, checksum: 2ae31549fdd89221db237ef278b5a688 (MD5) Previous issue date: 2011-09 / Capes / As ideias de codimensões e cocaracteres de uma PI-álgebra são de grande importância e são centrais nas aplicações das representações dos grupos simétricos à PIteoria (teoria das identidades polinomiais). Os conceitos de codimensão e cocaracter começaram a ser estudados em 1972 por Amitai Regev em seu importante trabalho sobre identidades polinomiais do produto tensorial de PI-álgebras. Ao longo das últimas décadas muitos resultados importantes surgiram com o uso das representações e dos métodos assintóticos na PI-teoria. Neste trabalho apresentaremos inicialmente ideias e resultados básicos da Teoria de Young sobre as representações dos grupos simétricos. De posse desses resultados, estudaremos as sequências limitadas de codimensões e as sequências de cocaracteres de álgebras que satisfazem alguma identidade de Capelli. Apresentaremos também os cálculos das codimensões e dos cocaracteres da álgebra de Grassmann. / The ideas of codimensions and cocharacters of a PI-algebra are of great and central importance in the applications of representations of symmetric groups to PI-theory (theory of the polynomial identities). The study of the concepts of codimensions and cocharacters started in 1972 by Amitai Regev in his important work about polynomial identities of the tensor product of PI-algebras. During the last decades many important results arose with the use of representations and asymptotic methods in PI-theory. In this work we will present firstly ideas and basic results in the Young’s theory about the representations of symmetric groups. With these results we shall study the limited sequences of codimensions and the cocharacter sequences of algebras that satisfy some of the Capelli identity. It will also be presented the calculation of the codimensions and cocharacters of the Grassmann Algebra.
3

Representações dos grupos simétrico e alternante e aplicações às identidades polinomiais

Fonseca, Marlon Pimenta 28 November 2014 (has links)
Made available in DSpace on 2016-06-02T20:28:31Z (GMT). No. of bitstreams: 1 6450.pdf: 757192 bytes, checksum: 765b66ca6aed0686ecbcd10c145cefac (MD5) Previous issue date: 2014-11-28 / Financiadora de Estudos e Projetos / In this dissertation we ll present a discussion about the Representations of the Symmetric Group Sn and Alternating Group An. We ll study basics results of the Young s Theory about the representations of the Symmetric Group and discover the decomposition of the algebra FSn in simple subalgebras. After, we ll utilize this decomposition to find the decomposition of the algebra FAn in simple subalgebras. Finally, we ll use this decompositions, together with the PI Theory, for get the sequence of A-codimensions for the Grassmann Algebra (Exterior Algebra) infinitely generated. / Neste trabalho apresentamos uma discussão a respeito das Representações dos Grupos Simétrico Sn e do Grupo Alternante An. Estudaremos resultados básicos da Teoria de Young sobre as representações do grupo simétrico para encontrarmos a decomposição da álgebra de grupo FSn em subálgebras simples. Depois utilizaremos tal decomposição para encontrar a decomposição da álgebra de grupo FAn em subálgebras simples. Por fim empregaremos as informações a respeito das decomposições acima citadas, juntamente com a PI-Teoria, para obter a sequência de A-codimensões para a álgebra de Grassmann (álgebra exterior) infinitamente gerada.

Page generated in 0.0599 seconds