• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identidades e polinômios centrais graduados para o produto tensorial pela álgebra de Grassmann. / Identities and central polynomials graded for the tensor product by Grassmann's algebra

SILVA, Jussiê Ubaldo da. 26 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-26T13:32:46Z No. of bitstreams: 1 JUSSIÊ UBALDO DA SILVA - DISSERTAÇÃO PPGMAT 2011..pdf: 609032 bytes, checksum: cb1a1234420f940ac2f6aa5c003e9d94 (MD5) / Made available in DSpace on 2018-07-26T13:32:46Z (GMT). No. of bitstreams: 1 JUSSIÊ UBALDO DA SILVA - DISSERTAÇÃO PPGMAT 2011..pdf: 609032 bytes, checksum: cb1a1234420f940ac2f6aa5c003e9d94 (MD5) Previous issue date: 2011-07 / Capes / SendoG um grupo abeliano eR uma álgebraG-graduada, consideramos no produto tensorialR⊗E (sendoE a álgebra exterior de dimensão infinita) a (G×Z2)graduação natural, obtida a partir daG-graduação deR. Neste trabalho apresentamos resultados que relacionam as identidades graduadas e resultados que relacionam os polinômios centrais graduados das álgebrasR eR⊗E. Como aplicação obtemos a PI-equivalência entre as álgebrasM1,1(E)⊗E eM2(E), resultado que é parte do clássico Teorema do Produto Tensorial de Kemer. Também apresentamos descrições das identidades e dos polinômios centrais (Zn × Z2)-graduados da álgebra Mn(E), e das identidades e dos polinômios centrais Z2-graduados da álgebra E ⊗ E, considerando para esta última uma graduação diferente da usual. Para uma visualização mais confiáveis das formulas e sinais matemáticos deste resumo recomendamos o download do arquivo. / LetG be an abelian group andR aG-graded algebra. We consider in the tensor product R ⊗ E, where E is the exterior algebra of infinite dimension, the natural (G×Z2)-grading, obtained fromG-grading ofR. In this work, we present results that relates the graded identities and also relates the graded central polynomials of the algebrasR andR⊗E. As an application we obtain the PI-equivalence between the algebras M1,1(E)⊗E and M2(E), which is a part of the Tensor Product Theorem of Kemer. We also present descriptions of the (Zn × Z2)-graded identities and central polynomials of the algebra Mn(E), as well as of theZ2-graded identities and central polynomials of the algebra E ⊗ E. In the last case, we consider a different grading from the usual one.
2

Algumas Aplicações de Integrais de Trajetória Grassmannianas na Teoria Quântica Moderna / Some Applications of Grassmannianas Trajectory Integrals in Modern Quantum Theory

Paulo Barbosa Barros 29 October 1998 (has links)
Este trabalho é dedicado à aplicação de integrais de trajetória de Grassmann para o cálculo de operadores relevantes aos problemas da teoria quântica relativística. Primeiramente uma visão geral detalhada do método é fornecida. Então concentramos nas definições e aplicações das integrais de trajetória sobre as variáveis de Grassmann. Discutimos, em detalhe, um importante papel das integrais de trajetória de Grassmann na representação de propagadores de partículas relativísticas. Derivamos o chamado fatores de spin para tais representações, fazendo as integrações Grasmannianas. Uma contribuição completamente original foi feita aplicando tais integrais ao cálculo de operadores. Derivamos, desta forma, um conjunto de fórmulas novas para as funções de operadores das matrizes y. A aplicações de tais fórmulas são apresentadas. / This work is devoted to an application of Grassmann path integrals to operator calculus relevant to problems of relativistic quantum theory. A detailed survey of path integral method is given first. Then we concentrate ourselves on definitions and applications of path integrals over Grassmann variables. We discuss in detail an important role of Grassmann path integrals in representations of relativistic particle propagators. We derive the so called spin factors for such representations doing Grassmann integrations. A completely original contribution was made in application of such integrals to operator calculus. We have derived in such a way a set of new formulas for operator functions of y-matrices. Applications of such formulas are presented.
3

Algumas Aplicações de Integrais de Trajetória Grassmannianas na Teoria Quântica Moderna / Some Applications of Grassmannianas Trajectory Integrals in Modern Quantum Theory

Barros, Paulo Barbosa 29 October 1998 (has links)
Este trabalho é dedicado à aplicação de integrais de trajetória de Grassmann para o cálculo de operadores relevantes aos problemas da teoria quântica relativística. Primeiramente uma visão geral detalhada do método é fornecida. Então concentramos nas definições e aplicações das integrais de trajetória sobre as variáveis de Grassmann. Discutimos, em detalhe, um importante papel das integrais de trajetória de Grassmann na representação de propagadores de partículas relativísticas. Derivamos o chamado fatores de spin para tais representações, fazendo as integrações Grasmannianas. Uma contribuição completamente original foi feita aplicando tais integrais ao cálculo de operadores. Derivamos, desta forma, um conjunto de fórmulas novas para as funções de operadores das matrizes y. A aplicações de tais fórmulas são apresentadas. / This work is devoted to an application of Grassmann path integrals to operator calculus relevant to problems of relativistic quantum theory. A detailed survey of path integral method is given first. Then we concentrate ourselves on definitions and applications of path integrals over Grassmann variables. We discuss in detail an important role of Grassmann path integrals in representations of relativistic particle propagators. We derive the so called spin factors for such representations doing Grassmann integrations. A completely original contribution was made in application of such integrals to operator calculus. We have derived in such a way a set of new formulas for operator functions of y-matrices. Applications of such formulas are presented.
4

Identidades polinomiais e polinômios centrais para Álgebra de Grassmann. / Polynomial identities and central polynomials for Grassmann's Algebra.

COSTA, Nancy Lima. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:56:35Z No. of bitstreams: 1 NANCY LIMA COSTA - DISSERTAÇÃO PPGMAT 2012..pdf: 696380 bytes, checksum: b115561e2d297770211db99b1ed44747 (MD5) / Made available in DSpace on 2018-08-05T13:56:35Z (GMT). No. of bitstreams: 1 NANCY LIMA COSTA - DISSERTAÇÃO PPGMAT 2012..pdf: 696380 bytes, checksum: b115561e2d297770211db99b1ed44747 (MD5) Previous issue date: 2012-08 / Capes / Neste trabalho de dissertação estudamos as identidades polinomiais ordinárias para a Álgebra de Grassmann com unidade, denotada por E, e sem unidade, denotada por E 0, para corpos de característica diferente de 2. Além disso, também estudamos as identidades Z2-graduadas da álgebra E no caso em que o corpo tem característica positiva. Por fim, descrevemos o T-espaço dos polinômios centrais de E tanto para corpos de característica zero, quanto para corpos de característica positiva e descrevemos também os polinômios centrais de E 0 para corpos de característica positiva. / In this dissertation we study the ordinary polynomial identities for the Grassmann Algebra with unity, denoted by E, and without unity, denoted by E 0, for fields of characteristic di erent from 2. We also study the Z2-graded identities of the algebra E over elds of positive characteristic. Finaly, we describe the T-space of the central polynomials of E for fields of characteristic zero and also for fields of positive characteristic, moreover we describe the T-space of the central polynomials of E 0 for fields of positive characteristic.
5

Codimensões e cocaracteres de PI-Álgebras. / Codimensions and cocaracteres of PI-Algebras.

OLIVEIRA, Antonio Igor Silva de. 27 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-27T15:29:31Z No. of bitstreams: 1 ANTONIO IGOR SILVA DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2011..pdf: 599013 bytes, checksum: 2ae31549fdd89221db237ef278b5a688 (MD5) / Made available in DSpace on 2018-07-27T15:29:31Z (GMT). No. of bitstreams: 1 ANTONIO IGOR SILVA DE OLIVEIRA - DISSERTAÇÃO PPGMAT 2011..pdf: 599013 bytes, checksum: 2ae31549fdd89221db237ef278b5a688 (MD5) Previous issue date: 2011-09 / Capes / As ideias de codimensões e cocaracteres de uma PI-álgebra são de grande importância e são centrais nas aplicações das representações dos grupos simétricos à PIteoria (teoria das identidades polinomiais). Os conceitos de codimensão e cocaracter começaram a ser estudados em 1972 por Amitai Regev em seu importante trabalho sobre identidades polinomiais do produto tensorial de PI-álgebras. Ao longo das últimas décadas muitos resultados importantes surgiram com o uso das representações e dos métodos assintóticos na PI-teoria. Neste trabalho apresentaremos inicialmente ideias e resultados básicos da Teoria de Young sobre as representações dos grupos simétricos. De posse desses resultados, estudaremos as sequências limitadas de codimensões e as sequências de cocaracteres de álgebras que satisfazem alguma identidade de Capelli. Apresentaremos também os cálculos das codimensões e dos cocaracteres da álgebra de Grassmann. / The ideas of codimensions and cocharacters of a PI-algebra are of great and central importance in the applications of representations of symmetric groups to PI-theory (theory of the polynomial identities). The study of the concepts of codimensions and cocharacters started in 1972 by Amitai Regev in his important work about polynomial identities of the tensor product of PI-algebras. During the last decades many important results arose with the use of representations and asymptotic methods in PI-theory. In this work we will present firstly ideas and basic results in the Young’s theory about the representations of symmetric groups. With these results we shall study the limited sequences of codimensions and the cocharacter sequences of algebras that satisfy some of the Capelli identity. It will also be presented the calculation of the codimensions and cocharacters of the Grassmann Algebra.
6

O PASSEIO DE CATALAN NA PRAIA E AS GRASSMANNIANAS DE RETAS

GUIMARÃES, Hugo Leonardo de Andrade 01 1900 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-10T17:09:30Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) HLAG.pdf: 1126552 bytes, checksum: 1e1ac46e79a77b1688e9cb1f88285609 (MD5) / Made available in DSpace on 2015-03-10T17:09:30Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) HLAG.pdf: 1126552 bytes, checksum: 1e1ac46e79a77b1688e9cb1f88285609 (MD5) Previous issue date: 2012-01 / O objetivo desse trabalho é mostrar que os Top Intersection Numbers das Grassmannianas de retas G(2,n+2) satisfazem a relação de recorrência apresentada no artigo "Catalan Traffic at the Beach" e a conexão desses dois com os números de Catalan. Tudo isso será feito com a teoria das Derivações de Schubert e sua conexão com as Grassmannianas de retas.
7

O passeio de Catalan na praia e as Grassmannianas de retas

Leonardo de Andrade Guimarães, Hugo 31 January 2012 (has links)
Made available in DSpace on 2014-06-12T18:33:54Z (GMT). No. of bitstreams: 2 arquivo9589_1.pdf: 1126552 bytes, checksum: 1e1ac46e79a77b1688e9cb1f88285609 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2012 / O objetivo desse trabalho é mostrar que os Top Intersection Numbers das Grassmannianas de retas G(2,n+2) satisfazem a relação de recorrência apresentada no artigo "Catalan Traffic at the Beach" e a conexão desses dois com os números de Catalan. Tudo isso será feito com a teoria das Derivações de Schubert e sua conexão com as Grassmannianas de retas

Page generated in 0.0451 seconds