• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graded representations of Khovanov-Lauda-Rouquier algebras

Sutton, Louise January 2017 (has links)
The Khovanov{Lauda{Rouquier algebras Rn are a relatively new family of Z-graded algebras. Their cyclotomic quotients R n are intimately connected to a smaller family of algebras, the cyclotomic Hecke algebras H n of type A, via Brundan and Kleshchev's Graded Isomorphism Theorem. The study of representation theory of H n is well developed, partly inspired by the remaining open questions about the modular representations of the symmetric group Sn. There is a profound interplay between the representations for Sn and combinatorics, whereby each irreducible representation in characteristic zero can be realised as a Specht module whose basis is constructed from combinatorial objects. For R n , we can similarly construct their representations as analogous Specht modules in a combinatorial fashion. Many results can be lifted through the Graded Isomorphism Theorem from the symmetric group algebras, and more so from H n , to the cyclotomic Khovanov{Lauda{Rouquier algebras, providing a foundation for the representation theory of R n . Following the introduction of R n , Brundan, Kleshchev and Wang discovered that Specht modules over R n have Z-graded bases, giving rise to the study of graded Specht modules. In this thesis we solely study graded Specht modules and their irreducible quotients for R n . One of the main problems in graded representation theory of R n , the Graded Decomposition Number Problem, is to determine the graded multiplicities of graded irreducible R n -modules arising as graded composition factors of graded Specht modules. We rst consider R n in level one, which is isomorphic to the Iwahori{Hecke algebra of type A, and research graded Specht modules labelled by hook partitions in this context. In quantum characteristic two, we extend to R n a result of Murphy for the symmetric groups, determining graded ltrations of Specht modules labelled by hook partitions, whose factors appear as Specht modules labelled by two-part partitions. In quantum characteristic at least three, we determine an analogous R n -version of Peel's Theorem for the symmetric groups, providing an alternative approach to Chuang, Miyachi and Tan. We then study graded Specht modules labelled by hook bipartitions for R n in level two, which is isomorphic to the Iwahori{Hecke algebra of type B. In quantum characterisitic at least three, we completely determine the composition factors of Specht modules labelled by hook bipartitions for R n , together with their graded analogues.
2

Hirzebruch-Riemann-Roch theorem for differential graded algebras

Shklyarov, Dmytro January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Yan S. Soibelman / Recall the classical Riemann-Roch theorem for curves: Given a smooth projective complex curve and two holomorphic vector bundles E, F on it, the Euler can be computed in terms of the ranks and the degrees of the vector bundles. Remarkably, there are a number of similarly looking formulas in algebra. The simplest example is the Ringel formula in the theory of quivers. It expresses the Euler form of two finite-dimensional representations of a quiver algebra in terms of a certain pairing of their dimension vectors. The existence of Riemann-Roch type formulas in these two settings is a consequence of a deeper similarity in the structure of the corresponding derived categories - those of sheaves on curves and of modules over quiver algebras. The thesis is devoted to a version of the Riemann-Roch formula for abstract derived categories. By the latter we understand the derived categories of differential graded (DG) categories. More specifically, we work with the categories of perfect modules over DG algebras. These are a simultaneous generalization of the derived categories of modules over associative algebras and the derived categories of schemes. Given an arbitrary DG algebra A, satisfying a certain finiteness condition, we define and explicitly describe a canonical pairing on its Hochschild homology. Then we give an explicit formula for the Euler character of an arbitrary perfect A-module, the character is an element of the Hochschild homology of A. In this setting, our noncommutative Riemann-Roch formula expresses the Euler characteristic of the Hom-complex between any two perfect A-modules in terms of the pairing of their Euler characters. One of the main applications of our results is a theorem that the aforementioned pairing on the Hochschild homology is non-degenerate when the DG algebra satisfies a smoothness condition. This theorem implies a special case of the well-known noncommutative Hodge-to-de Rham degeneration conjecture. Another application is related to mathematical physics: We explicitly construct an open-closed topological field theory from an arbitrary Frobenius algebra and then, following ideas of physicists, interpret the noncommutative Riemann-Roch formula as a special case of the so-called topological Cardy condition.
3

Graduações em álgebras matriciais. / Graduações em álgebras matriciais.

GUIMARÃES, Alan de Araújo. 10 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-10T16:27:27Z No. of bitstreams: 1 ALAN DE ARAÚJO GUIMARÃES - DISSERTAÇÃO PPGMAT 2014..pdf: 389630 bytes, checksum: 8fee4901dc2c6f4008991c541e1728b0 (MD5) / Made available in DSpace on 2018-08-10T16:27:27Z (GMT). No. of bitstreams: 1 ALAN DE ARAÚJO GUIMARÃES - DISSERTAÇÃO PPGMAT 2014..pdf: 389630 bytes, checksum: 8fee4901dc2c6f4008991c541e1728b0 (MD5) Previous issue date: 2014-12 / Capes / O tema central da presente dissertação é o estudo das graduações de um grupo G nas álgebras UTn(F) eUT(d1,...,dm).Inicialmente, no Capítulo 2, supondo o grupo G abeliano e infnito e o corpo F algebricamente fechado e de característica zero, provamos que qualquer graduação em UTn(F) é elementar (a menos de automorfismo G-graduado). Ainda no Capítulo 2,sem fazer qualquer suposição sobre o grupo G e ocorpo F, chegamos à mesma conclusão. Para tanto, foi necessário utilizar técnicas mais sutis na demonstração. No Capítulo 3, novamente supondo o grupo G abeliano e infinito e o corpo F algebricamente fechado e de característica zero,classificamos as G-graduações da F-álgebra UT(d1,...,dm). Veremos que,neste caso, existe uma decomposição d1 = tp1,...,dm = tpm talqueUT(d1,...,dm) é isomorfa, como álgebra G-graduada ,ao produto tensorial Mt(F)⊗UT(p1,...,pm), onde Mt(F) tem uma G-graduação na e UT(p1,...,pm) tem uma G-graduação elementar. / The central theme of this dissertation is the study the of the gradings of a group G in the algebras UTn(F) and UT(d1, . . . , dm). Initially, in Chapter 2, assuming G a nite abelian group and F an algebraically closed eld and of characteristic zero, we prove that any grading in UTn(F) is elementary (up to graded isomorphism). Still in Chapter 2, without making any assumption about the group G and the eld F, we obtain the same conclusion. To prove this was necessary to use more subtle techniques in demonstration. In Chapter 3, again assuming G a nite abelian group and F an algebraically closed eld of characteristic zero, we classify the gradings of the algebra UT(d1, . . . , dm). We will see that there is a decomposition d1 = tp1, . . . , dm = tpm such that UT(d1, ..., dm) is isomorphic, as graded algebra, to the tensor product Mt(F) ⊗ UT(p1, . . . , pm), where Mt(F) has a ne grading and UT(p1, . . . , pm) has a elementary grading.
4

O teorema de Posner para PI-álgebras graduadas gr-primas / The Posner's theorem for graded PI-algebras gr-primes

Lobo, Miqueias de Melo, 1990- 27 August 2018 (has links)
Orientador: Lucio Centrone / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:21:21Z (GMT). No. of bitstreams: 1 Lobo_MiqueiasdeMelo_M.pdf: 612489 bytes, checksum: 4f5b408cbd8a473c143ee07e289ce4fb (MD5) Previous issue date: 2015 / Resumo: Neste trabalho estudamos álgebras com identidades polinomiais. Mais especificamente, estudamos os principais teoremas de estrutura das PI-álgebras graduadas e entre eles a versão graduada do teorema de Posner, obtida por Balaba em 2005, que abriu o caminho para diversas aplicações importantes nos últimos anos / Abstract: In this work we study algebras with polynomial identities. More specifically, we study the main structure theorems for graded PI-algebras and including the graded version of Posner's theorem, obtained by Balaba in 2005, which paved the way for several important applications in recent years / Mestrado / Matematica / Mestre em Matemática
5

Ga-actions on Complex Affine Threefolds

Hedén, Isac January 2013 (has links)
This  thesis  consists  of two papers  and  a summary.  The  papers  both  deal with  affine algebraic complex  varieties,  and  in particular such  varieties  in dimension  three  that have a non-trivial action  of one of the  one-dimensional  algebraic  groups  Ga   :=  (C, +) and  Gm  :=  (C*, ·).  The methods  used  involve  blowing up  of subvarieties, the correspondances between  Ga - and  Gm - actions  on an affine variety  X with locally nilpotent derivations  and Z-gradings  respectively  on O(X) and passing from a filtered algebra  A to its associated graded  algebra  gr(A). In Paper  I, we study  Russell’s hypersurface  X , i.e. the affine variety  in the affine space A4 given by the equation  x + x2y + z3 + t2 = 0. We reprove by geometric means Makar-Limanov’s result which states  that X is not isomorphic to A3 – a result which was crucial to Koras-Russell’s proof of the linearization conjecture  for Gm -actions on A3. Our method consist in realizing X as an open part  of a blowup M  −→ A3 and to show that each Ga -action on X descends to A3 . This follows from considerations of the graded  algebra  associated to O(X ) with respect  to a certain filtration. In Paper  II, we study  Ga-threefolds X  which have  as their  algebraic  quotient  the  affine plane  A2  = Sp(C[x, y]) and  are a principal  bundle  above the  punctured plane  A2  :=  A2 \ {0}. Equivalently, we study  affine Ga -varieties  Pˆ  that extend  a principal  bundle  P over A2, being P together  with an extra  fiber over the origin in A2. First  the trivial  bundle  is studied,  and some examples of extensions  are given (including  smooth  ones which are not isomorphic  to A2 × A). The  most  basic among  the  non-trivial  principal  bundles  over A2 is SL2 (C)  −→ A2, A  1→  Ae1 where e1  denotes  the first unit  vector,  and we show that any non-trivial  bundle  can be realized as a pullback  of this  bundle  with  respect  to  a morphism  A2  −→ A2. Therefore  the  attention is then  restricted to extensions  of SL2(C)  and  find two families of such extensions  via a study of the  graded  algebras  associated  with  the  coordinate  rings  O(Pˆ)  '→ O(P ) with  respect  to  a filtration  which is defined in terms  of the Ga -actions  on P and Pˆ  respectively.
6

Identidades polinomiais e polinômios centrais para Álgebra de Grassmann. / Polynomial identities and central polynomials for Grassmann's Algebra.

COSTA, Nancy Lima. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:56:35Z No. of bitstreams: 1 NANCY LIMA COSTA - DISSERTAÇÃO PPGMAT 2012..pdf: 696380 bytes, checksum: b115561e2d297770211db99b1ed44747 (MD5) / Made available in DSpace on 2018-08-05T13:56:35Z (GMT). No. of bitstreams: 1 NANCY LIMA COSTA - DISSERTAÇÃO PPGMAT 2012..pdf: 696380 bytes, checksum: b115561e2d297770211db99b1ed44747 (MD5) Previous issue date: 2012-08 / Capes / Neste trabalho de dissertação estudamos as identidades polinomiais ordinárias para a Álgebra de Grassmann com unidade, denotada por E, e sem unidade, denotada por E 0, para corpos de característica diferente de 2. Além disso, também estudamos as identidades Z2-graduadas da álgebra E no caso em que o corpo tem característica positiva. Por fim, descrevemos o T-espaço dos polinômios centrais de E tanto para corpos de característica zero, quanto para corpos de característica positiva e descrevemos também os polinômios centrais de E 0 para corpos de característica positiva. / In this dissertation we study the ordinary polynomial identities for the Grassmann Algebra with unity, denoted by E, and without unity, denoted by E 0, for fields of characteristic di erent from 2. We also study the Z2-graded identities of the algebra E over elds of positive characteristic. Finaly, we describe the T-space of the central polynomials of E for fields of characteristic zero and also for fields of positive characteristic, moreover we describe the T-space of the central polynomials of E 0 for fields of positive characteristic.
7

PI-equivalências em álgebras matriciais. / PI-equivalences in matrix algebras.

MACÊDO, David Levi da Silva. 10 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-10T17:30:02Z No. of bitstreams: 1 DAVID LEVI DA SILVA MACÊDO - DISSERTAÇÃO PPGMAT 2015..pdf: 982236 bytes, checksum: eeb47d97976467c33db1c843ee7e5f90 (MD5) / Made available in DSpace on 2018-08-10T17:30:02Z (GMT). No. of bitstreams: 1 DAVID LEVI DA SILVA MACÊDO - DISSERTAÇÃO PPGMAT 2015..pdf: 982236 bytes, checksum: eeb47d97976467c33db1c843ee7e5f90 (MD5) Previous issue date: 2015-08 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui. / To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
8

Koszul and generalized Koszul properties for noncommutative graded algebras

Phan, Christopher Lee, 1980- 06 1900 (has links)
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials. / Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
9

Sur les opérations de tores algébriques de complexité un dans les variétés affines / On affine varieties with an algebraic torus action of complexity one

Langlois, Kevin 24 September 2013 (has links)
Cette thèse est consacrée aux propriétés géométriques des opérations de tores algébriques dans les variétés affines. Elle est issue de trois prépublications qui correspondent aux points (1), (2), (3) ci-après. Soit X une variété affine munie d’une opération d’un tore algébrique T. Nous appelons complexité la codimension de l’orbite générale de T dans X. Sous l’hypothèse de normalité et lorsque le corps de base est algébriquement clos de caractéristique 0, la variété X admet une description combinatoire en termes de géométrie convexe. Cette description, obtenue en 2006 par Altmann et Hausen, généralise celle classique des variétes toriques. Notre but consiste à étudier des problèmes nouveaux concernant les propriétés algébriques et géométriques de X lorsque l’operation de T dans X est de complexité 1. (1) Dans la première partie, un résultat donne une manière explicite de déterminer la clôture intégrale de toute variété affine définie sur un corps algébriquement clos de caractérisque 0 munie d’une opération de T de complexité 1 en termes de la description combinatoire d’Altmann-Hausen. Comme application, nous donnons une classification complète des idéaux intégralement clos homogènes de l’algèbre des fonctions régulières de X et généralisons un théorème de Reid-Roberts-Vitulli sur la description de certains idéaux normaux de l’algèbre des polynômes à plusieurs variables. (2) Les calculs de la première partie suggèrent une démonstration de la validité de la présentation d’Altmann-Hausen sur un corps quelconque dans le cas de complexité 1. Ce qui est fait dans la deuxième partie. Dans la situation non déployée, la descente galoisienne d’une variété affine normale munie d’une opération d’un tore algébrique de complexité 1 est décrite par un nouvel objet combinatoire que nous appelons diviseur polyédral Galois stable. (3) Dans la troisième partie, lorsque que le corps de base est parfait, nous classifions toutes les opérations du groupe additif dans X normalisées par l’action de T de complexité 1. Cette classification généralise des travaux classiques de Flenner et Zaidenberg dans le cas des surfaces et de Liendo dans le cas où le corps ambiant est algébriquement clos de caractéristique 0. / This thesis is devoted to the study of geometric properties of affine algebraic varieties endowed with an action of an algebraic torus. It comes from three preprints which correspond to the indicated points (1), (2), (3). Let X be an affine variety equipped with an action of the algebraic torus T. The complexity of the T-action on X is the codimension of the general T-orbit. Under the assumption of normality and when the ground field is algebraically closed of characteristic 0, the variety X admits a combinatorial description in terms of convex geometry. This description obtained by Altmann and Hausen in the year 2006 generalizes the classical one for toric varieties. Our purpose is to investigate new problems on the algebraic and geometric properties of the variety X when the T-action on X is of complexity 1. (1) In the first part, a result gives an effective method to determine the integral closure of any affine variety defined over an algebraically field of characteristic 0 with a T-action of complexity 1 in terms of the combinatorial description of Altmann-Hausen. As an application, we provide an entire classification of the homogeneous integrally closed ideals of the algebra of regular functions on X and generalize the Reid-Roberts-Vitulli's theorem on the description of certain normal ideals of the polynomial algebra. (2) The calculations of the first part suggest a proof of the validity of the presentation of Altmann-Hausen in the case of complexity 1 over an arbitrary ground field. This is done in the second part of this thesis. In the non-split situation, the Galois descent of normal affine varieties with a T-action of complexity 1 is described by a new combinatorial object which we call a Galois invariant polyhedral divisor. (3) In the third part, when the base field is perfect, we classify all the actions of the additive group on X normalized by the T-action of complexity 1. This classification generalizes classical works of Flenner and Zaidenberg in the surface case and of Liendo when the base field is algebraically closed of characteristic 0.
10

Representações de hiperálgebras de laços e álgebras de multi-correntes / Representations of hyper loop algebras and multi curret algebras

Biânchi, Angelo Calil, 1984- 20 August 2018 (has links)
Orientadores: Adriano Adrega de Moura, Vyjayanthi Chari / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T03:20:21Z (GMT). No. of bitstreams: 1 Bianchi_AngeloCalil_D.pdf: 2798335 bytes, checksum: bc4f008ee1c7b89870e5bf16c8ab0a67 (MD5) Previous issue date: 2012 / Resumo: Este trabalho é dedicado ao estudo de alguns assuntos da teoria de representações de certas álgebras que podem ser vistas como generalizações do conceito de álgebras de Kac-Moody am. De modo geral, o trabalho é dividido em duas partes: na primeira delas, abordamos questões sobre as representações de dimensão finita das hiperálgebras de laços torcidas e, na outra, abordamos certas propriedades homológicas da categoria de representações de uma álgebra de Lie multi-graduada, as quais são extremamente úteis para obter uma generalização do conceito de módulos de Kirillov-Reshetikhin / Abstract: This work is dedicated to the study of some aspects of the representation theory of certain algebras which can be regarded as generalizations of the concept of affine Kac- Moody algebras. The work is divided into two parts: the first is concerned with the finite-dimensional representations of twisted hyper loop algebras and the other focuses on certain homological properties of the category of representations of a multigraded Lie algebra which are useful to study a generalization of the concept of Kirillov-Reshetikhin modules / Doutorado / Matematica / Doutor em Matemática

Page generated in 0.0645 seconds