• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PI-equivalências em álgebras matriciais. / PI-equivalences in matrix algebras.

MACÊDO, David Levi da Silva. 10 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-10T17:30:02Z No. of bitstreams: 1 DAVID LEVI DA SILVA MACÊDO - DISSERTAÇÃO PPGMAT 2015..pdf: 982236 bytes, checksum: eeb47d97976467c33db1c843ee7e5f90 (MD5) / Made available in DSpace on 2018-08-10T17:30:02Z (GMT). No. of bitstreams: 1 DAVID LEVI DA SILVA MACÊDO - DISSERTAÇÃO PPGMAT 2015..pdf: 982236 bytes, checksum: eeb47d97976467c33db1c843ee7e5f90 (MD5) Previous issue date: 2015-08 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui. / To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
2

Identidades polinomiais graduadas para álgebras de matrizes. / Graded polynomial identities for matrix algebras.

ALVES, Sirlene Trajano. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:16:57Z No. of bitstreams: 1 SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) / Made available in DSpace on 2018-08-05T13:16:57Z (GMT). No. of bitstreams: 1 SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) Previous issue date: 2012-03 / O tema central desta dissertação é a descrição das identidades polinomiais graduadas da álgebra Mn(K). Métodos diferentes são empregados conforme a característica do corpo: se Char K = 0, à descrição das identidades graduadas se reduz a descrição das identidades multilineares, o que foi feito no Capítulo 2, onde são descritas as identidade de Mn(K) com uma classe ampla de graduações elementares; se Char K =p>0 e K é in nito, a descrição das identidades graduadas é reduzida à descrição das identidades multi-homogêneas, que torna o problema mais difícil, e técnicas como a construção de álgebras genéricas são necessárias. No Capítulo 3 são descritas as identidades Z e Zn-graduadas de Mn(K) para um corpo in nito K. / The main theme of this dissertation is the description of the graded polynomial identities of the algebra Mn(K). Diferent methods are used depending on the characteristic of the field: if Char K = 0, the description of the graded identities is reduced to the description of the multilinear graded identities, what was done in Chapter 2, where the identities of Mn(K) are described for a wide class of elementary gradings; if Char K =p>0 and K is in nite, the description of the graded identities is reduced to the study of the multi-homogeneous identities, wich makes it harder, and techniques such as the construction of generic algebras are necessary. In Chapter 3 the Z and Zn-graded identities of Mn(K) are described for an infinite field K
3

Identidades polinomiais graduadas de matrizes triangulares. / Graded polynomial identities of triangular matrices.

BORGES, Alex Ramos. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:53:31Z No. of bitstreams: 1 ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) / Made available in DSpace on 2018-08-06T14:53:31Z (GMT). No. of bitstreams: 1 ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) Previous issue date: 2012-12 / Neste trabalho serão estudadas as graduações e identidades polinomiais graduadas da álgebra Un(K) das matrizes triangulares superiores n×n sobre um corpo K, o qual será sempre in nito. Primeiramente, será estudado o caso n = 2, para o qual será mostrado que existe apenas uma graduação não trivial e serão descritos as identidades, as codimensões e os cocaracteres graduados. Para o caso n qualquer, serão estudadas as identidades e codimensões graduadas, considerando-se a Zn-graduação natural de Un(K). Finalmente, será apresentada uma classi cação das graduações de Un(K) por um grupo qualquer. / In this work we study the gradings and the graded polynomial identities of the upper n × n triangular matrices algebra Un(K) over a eld K, which is always in nity. The case n = 2 will be rstly studied, for which will be shown that there is only one nontrivial grading and we shall describe the graded identities, codimensions and cocharacters. For the general n case, we shall study graded identities and codimensions, considering the natural Zn-grading of Un(K). Finally, we will present a classi cation of the gradings of Un(K) by any group.
4

PI-equivalência em álgebras graduadas simples

Naves, Fernando Augusto 29 February 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-10-11T13:29:51Z No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-17T18:50:57Z (GMT) No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-17T18:51:05Z (GMT) No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Made available in DSpace on 2016-10-17T19:06:01Z (GMT). No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) Previous issue date: 2016-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This work aims to give a description, under certain hypothesis, of the graded simple algebras and prove that they are determined by their graded identities. For this, we study the papers [3] and [19]. More precisely we will show the following: Let G be a group, F an algebraically closed eld, and R = L g2G Rg a finite dimensional G-graded F-algebra such that the order of each finite subgroup of G is invertible in F. Then R is a G-graded simple algebra if and only if R is isomorphic, as graded algebra, to the tensor product C = Mn(F) F [H], where H is a nite subgroup of G, is a 2-cocycle in H, Mn(F) has an elementary G-grading, F [H] has a canonical grading and C has an induced G-grading by the tensor product. Based on this result, admitting the same assumptions and adding that G is an abelian group, we prove that two graded simple algebras satisfy the same graded identities if and only if they are isomorphic as graded algebras. / Este trabalho tem por objetivo dar uma descrição, sob certas hipóteses, das álgebras graduadas simples e demonstrar que elas são determinadas por suas identidades graduadas. Para isso, estudamos os artigos [3] e [19]. Precisamente mostraremos o seguinte: sejam G um grupo, F um corpo algebricamente fechado e R =Lg2GRg uma F-álgebra G-graduada de dimensão finita, tal que a ordem de todo subgrupo finito de G e invertível em F. Então R é uma álgebra G-graduada simples se, e somente se, R é isomorfa, como álgebra graduada, ao produto tensorial C = Mn(F) F[H], onde H e subgrupo finito de G, e um 2-cociclo em H, Mn(F) tem uma graduação elementar, F[H] tem uma graduação canônica e considera-se em C a G-graduação induzida pelo produto tensorial. Partindo deste resultado, admitindo as mesmas hipóteses e adicionando que G seja um grupo abeliano, provaremos que duas álgebras graduadas simples satisfazem as mesmas identidades graduadas se, e somente se, são isomorfas como álgebras graduadas.

Page generated in 0.098 seconds