Spelling suggestions: "subject:"identidades graduados"" "subject:"identidades graduada""
1 |
Cocaracteres e Identidades Graduadas da Álgebra de Lie Sl2Santos, Joselma Maia 23 November 2015 (has links)
Submitted by Marcos Samuel (msamjunior@gmail.com) on 2016-06-08T11:04:00Z
No. of bitstreams: 1
Joselma Maia.pdf: 1966716 bytes, checksum: 523d6df3648a4ec5fbda51a38d1c1b81 (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T17:21:27Z (GMT) No. of bitstreams: 1
Joselma Maia.pdf: 1966716 bytes, checksum: 523d6df3648a4ec5fbda51a38d1c1b81 (MD5) / Made available in DSpace on 2016-06-13T17:21:27Z (GMT). No. of bitstreams: 1
Joselma Maia.pdf: 1966716 bytes, checksum: 523d6df3648a4ec5fbda51a38d1c1b81 (MD5) / Considere um corpo de característica zero e a álgebra de Lie das matrizes de ordem 2 com traço zero sobre esse corpo. A menos de isomorfismo, esta álgebra pode ser munida de três graduações não triviais. Nesta dissertação é dada uma descrição completa dos cocaracteres graduados da álgebra em questão para as três graduações satisfeitas por ela. Também é dada uma descrição das identidades graduadas para as mesmas graduações.
Exibimos ainda explicitamente a base destas identidades.
|
2 |
Identidades e polinômios centrais graduados para o produto tensorial pela álgebra de Grassmann. / Identities and central polynomials graded for the tensor product by Grassmann's algebraSILVA, Jussiê Ubaldo da. 26 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-26T13:32:46Z
No. of bitstreams: 1
JUSSIÊ UBALDO DA SILVA - DISSERTAÇÃO PPGMAT 2011..pdf: 609032 bytes, checksum: cb1a1234420f940ac2f6aa5c003e9d94 (MD5) / Made available in DSpace on 2018-07-26T13:32:46Z (GMT). No. of bitstreams: 1
JUSSIÊ UBALDO DA SILVA - DISSERTAÇÃO PPGMAT 2011..pdf: 609032 bytes, checksum: cb1a1234420f940ac2f6aa5c003e9d94 (MD5)
Previous issue date: 2011-07 / Capes / SendoG um grupo abeliano eR uma álgebraG-graduada, consideramos no produto
tensorialR⊗E (sendoE a álgebra exterior de dimensão infinita) a (G×Z2)graduação
natural, obtida a partir daG-graduação deR. Neste trabalho apresentamos
resultados que relacionam as identidades graduadas e resultados que relacionam os
polinômios centrais graduados das álgebrasR eR⊗E. Como aplicação obtemos a
PI-equivalência entre as álgebrasM1,1(E)⊗E eM2(E), resultado que é parte do clássico
Teorema do Produto Tensorial de Kemer. Também apresentamos descrições das
identidades e dos polinômios centrais (Zn × Z2)-graduados da álgebra Mn(E), e das
identidades e dos polinômios centrais Z2-graduados da álgebra E ⊗ E, considerando
para esta última uma graduação diferente da usual.
Para uma visualização mais confiáveis das formulas e sinais matemáticos deste resumo recomendamos o download do arquivo. / LetG be an abelian group andR aG-graded algebra. We consider in the tensor product R ⊗ E, where E is the exterior algebra of infinite dimension, the natural (G×Z2)-grading, obtained fromG-grading ofR. In this work, we present results that relates the graded identities and also relates the graded central polynomials of the algebrasR andR⊗E. As an application we obtain the PI-equivalence between the algebras M1,1(E)⊗E and M2(E), which is a part of the Tensor Product Theorem of Kemer. We also present descriptions of the (Zn × Z2)-graded identities and central polynomials of the algebra Mn(E), as well as of theZ2-graded identities and central polynomials of the algebra E ⊗ E. In the last case, we consider a different grading from the usual one.
|
3 |
PI-equivalências em álgebras matriciais. / PI-equivalences in matrix algebras.MACÊDO, David Levi da Silva. 10 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-10T17:30:02Z
No. of bitstreams: 1
DAVID LEVI DA SILVA MACÊDO - DISSERTAÇÃO PPGMAT 2015..pdf: 982236 bytes, checksum: eeb47d97976467c33db1c843ee7e5f90 (MD5) / Made available in DSpace on 2018-08-10T17:30:02Z (GMT). No. of bitstreams: 1
DAVID LEVI DA SILVA MACÊDO - DISSERTAÇÃO PPGMAT 2015..pdf: 982236 bytes, checksum: eeb47d97976467c33db1c843ee7e5f90 (MD5)
Previous issue date: 2015-08 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui. / To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
|
4 |
Identidades polinomiais graduadas de matrizes triangulares. / Graded polynomial identities of triangular matrices.BORGES, Alex Ramos. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:53:31Z
No. of bitstreams: 1
ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) / Made available in DSpace on 2018-08-06T14:53:31Z (GMT). No. of bitstreams: 1
ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5)
Previous issue date: 2012-12 / Neste trabalho serão estudadas as graduações e identidades polinomiais graduadas
da álgebra Un(K) das matrizes triangulares superiores n×n sobre um corpo K, o qual
será sempre in nito. Primeiramente, será estudado o caso n = 2, para o qual será
mostrado que existe apenas uma graduação não trivial e serão descritos as identidades,
as codimensões e os cocaracteres graduados. Para o caso n qualquer, serão estudadas
as identidades e codimensões graduadas, considerando-se a Zn-graduação natural de
Un(K). Finalmente, será apresentada uma classi cação das graduações de Un(K) por
um grupo qualquer. / In this work we study the gradings and the graded polynomial identities of the
upper n × n triangular matrices algebra Un(K) over a eld K, which is always in nity.
The case n = 2 will be rstly studied, for which will be shown that there is only
one nontrivial grading and we shall describe the graded identities, codimensions and
cocharacters. For the general n case, we shall study graded identities and codimensions,
considering the natural Zn-grading of Un(K). Finally, we will present a classi cation
of the gradings of Un(K) by any group.
|
5 |
PI-equivalência em álgebras graduadas simplesNaves, Fernando Augusto 29 February 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-10-11T13:29:51Z
No. of bitstreams: 1
DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-17T18:50:57Z (GMT) No. of bitstreams: 1
DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-17T18:51:05Z (GMT) No. of bitstreams: 1
DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Made available in DSpace on 2016-10-17T19:06:01Z (GMT). No. of bitstreams: 1
DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5)
Previous issue date: 2016-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This work aims to give a description, under certain hypothesis, of the graded simple algebras and prove that they are determined by their graded identities. For this, we study the papers [3] and [19]. More precisely we will show the following: Let G be a group, F an algebraically closed eld, and R = L g2G Rg a finite dimensional G-graded F-algebra such that the order of each finite subgroup of G is invertible in F. Then R is a G-graded simple algebra if and only if R is isomorphic, as graded algebra, to the tensor product C = Mn(F) F [H], where H is a nite subgroup of G, is a 2-cocycle in H, Mn(F) has an elementary G-grading, F [H] has a canonical grading and C has an induced G-grading by the tensor product. Based on this result, admitting the same assumptions and adding that G is an abelian group, we prove that two graded simple algebras satisfy the same graded identities if and only if they are isomorphic as graded algebras. / Este trabalho tem por objetivo dar uma descrição, sob certas hipóteses, das álgebras graduadas simples e demonstrar que elas são determinadas por suas identidades graduadas. Para isso, estudamos os artigos [3] e [19]. Precisamente mostraremos o seguinte: sejam G um grupo, F um corpo algebricamente fechado e R =Lg2GRg uma F-álgebra G-graduada de dimensão finita, tal que a ordem de todo subgrupo finito de G e invertível em F. Então R é uma álgebra G-graduada simples se, e somente se, R é isomorfa, como álgebra graduada, ao produto tensorial C = Mn(F) F[H], onde H e subgrupo finito de G, e um 2-cociclo em H, Mn(F) tem uma graduação elementar, F[H] tem uma graduação canônica e considera-se em C a G-graduação induzida pelo produto tensorial. Partindo deste resultado, admitindo as mesmas hipóteses e adicionando que G seja um grupo abeliano, provaremos que duas álgebras graduadas simples satisfazem as mesmas identidades graduadas se, e somente se, são isomorfas como álgebras graduadas.
|
Page generated in 0.0713 seconds