Spelling suggestions: "subject:"braded algebra"" "subject:"craded algebra""
11 |
Identidades polinomiais graduadas para álgebras de matrizes. / Graded polynomial identities for matrix algebras.ALVES, Sirlene Trajano. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:16:57Z
No. of bitstreams: 1
SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) / Made available in DSpace on 2018-08-05T13:16:57Z (GMT). No. of bitstreams: 1
SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5)
Previous issue date: 2012-03 / O tema central desta dissertação é a descrição das identidades polinomiais
graduadas da álgebra Mn(K). Métodos diferentes são empregados conforme a
característica do corpo: se Char K = 0, à descrição das identidades graduadas se
reduz a descrição das identidades multilineares, o que foi feito no Capítulo 2, onde são
descritas as identidade de Mn(K) com uma classe ampla de graduações elementares;
se Char K =p>0 e K é in nito, a descrição das identidades graduadas é reduzida
à descrição das identidades multi-homogêneas, que torna o problema mais difícil, e
técnicas como a construção de álgebras genéricas são necessárias. No Capítulo 3 são
descritas as identidades Z e Zn-graduadas de Mn(K) para um corpo in nito K. / The main theme of this dissertation is the description of the graded polynomial
identities of the algebra Mn(K). Diferent methods are used depending on the
characteristic of the field: if Char K = 0, the description of the graded identities
is reduced to the description of the multilinear graded identities, what was done in
Chapter 2, where the identities of Mn(K) are described for a wide class of elementary
gradings; if Char K =p>0 and K is in nite, the description of the graded identities is
reduced to the study of the multi-homogeneous identities, wich makes it harder, and
techniques such as the construction of generic algebras are necessary. In Chapter 3 the
Z and Zn-graded identities of Mn(K) are described for an infinite field K
|
12 |
Álgebra de Rees de ideaisSantana, Jeocástria Rezende dos Santos 25 February 2014 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The Rees algebra of an ideal is an algebraic construction that takes place in
commutative algebra and algebraic geometry. Currently, the study of arithmetic and
homological properties of this object is cause for diverse research in commutative
algebra. Our main goal in this work is to address aspects such as dimension and
defining equations of the Rees algebra and other algebras that relate to it. / A álgebra de Rees de um ideal é uma construção algébrica que ocupa lugar de destaque na álgebra comutativa e na geometria algébrica. Atualmente, o estudo de propriedades aritméticas e homológicas desse objeto é motivo de diversas pesquisas em álgebra comutativa. Nosso principal objetivo nesse trabalho é tratar de aspectos como dimensão e equações de definição da álgebra de Rees e de outras álgebras que relacionam-se com ela.
|
13 |
Mixed Witt rings of algebras with involutionGarrel, Nicolas 04 April 2024 (has links)
Although there is no natural internal product for hermitian forms over an algebra with involution of the first kind, we describe how tomultiply two ε-hermitian forms to obtain a quadratic form over the base field. This allows to define a commutative graded ring structure by taking together bilinear forms and ε-hermitian forms, which we call the mixedWitt ring of an algebra with involution. We also describe a less powerful version of this construction for unitary involutions, which still defines a ring, but with a grading over Z instead of the Klein group. We first describe a general framework for defining graded rings out of monoidal functors from monoidal categories with strong symmetry properties to categories of modules. We then give a description of such a strongly symmetric category Brₕ(K, ι) which encodes the usual hermitian Morita theory of algebras with involutions over a field K. We can therefore apply the general framework to Brₕ(K, ι) and theWitt group functors to define our mixed Witt rings, and derive their basic properties, including explicit formulas for products of diagonal forms in terms of involution trace forms, explicit computations for the case of quaternion algebras, and reciprocity formulas relative to scalar extensions. We intend to describe in future articles further properties of those rings, such as a λ-ring structure, and relations with theMilnor conjecture and the theory of signatures of hermitian forms.
|
Page generated in 0.044 seconds