Return to search

Material Behavior During High Velocity Impacts - Novel Numerical Approaches

The prediction of material behavior and its microstructural evolution during high velocity impacts has been investigated for decades. The application of this topic can be observed in various engineering applications such as the cold spray process.
Cold spray (CS) is an additive manufacturing method in which solid particles are accelerated using a low temperature supersonic inert gas flow, prior to their impact onto a substrate and adhesion/consolidation. In this process, unlike other thermal spray processes, the particles are kept well below their melting point prior to impact. This allows the CS process to be used for the manufacturing of high quality, specialized products at a low energy input.
In CS, the deformation and bonding processes happen in a very short time (less than 100 ns). With the current technology, in-situ investigation is almost impossible. In this situation, numerical modeling methods are the best alternative to study the deposition process. There are several factors influencing the particle deposition, such as particle/substrate material properties, particle size, material temperature, particle velocity and so on, but it has been shown that the particle impact velocity has the major role during the deposition process. In fact, despite the type of bonding, i.e., mechanical or chemical, particle is sticking to the substrate after experiencing severe plastic deformation that occurs upon the impact at high velocities. Therefore, in order to develop the understating of the CS process, investigating the deformation behavior of material during high velocity impacts, and also bonding mechanisms involved during particle deposition must be investigated.
III
Although numerous studies have been done to explore the mechanisms occurring during particle deposition, the details of this process are still unclear.
Therefore, the purpose of this research is to study the fundamental aspects of material behavior during the deformation and deposition processes with the aim of improving the understating of the CS process. Two different numerical approaches will be used to achieve the objective of the study, i.e., Finite Element Method (FEM) and Molecular Dynamics (MD) method.
FEM will be used to study the metallic bonding occurring between the particle and the substrate. A physically based model to predict this phenomenon will be implemented into ABAQUS/Explicit FEM software. MD simulations will be performed to investigate the microstructure evolution during high velocity impacts. In order to characterize the deformation behavior of materials at a fundamental level, analysis will be focused on the basic mechanisms of plasticity and hardening in metals, i.e., the multiplication, glide and locking of dislocations, and also solid-state amorphization that happens at high strain rate deformations.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/43129
Date12 January 2022
CreatorsRahmati, Saeed
ContributorsJodoin, Bertrand
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAttribution-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nd/4.0/

Page generated in 0.0018 seconds