Cette thèse est consacrée à l'étude de quelques équations aux dérivées partielles non linéaires de type Dirichlet ou Neumann sur un domaine borné régulier, qui sont à structure variationnelle, et<br />qui présentent un défaut de compacité.<br />Dans la première partie, nous étudions une EDP homogène avec un opérateur non linéaire faisant<br />intervenir un poids strictement positif, une non-linéarité critique au sens de Sobolev et un paramètre $\lambda$. Nous établissons des résultats d'existence et de non-existence de solutions qui dépendent du comportement du poids au voisinage de ses minima, du paramètre $\lambda$ et de la géométrie du domaine. Dans la seconde partie, nous nous intéressons à des EDP non homogènes avec poids et avec une non-linéarité critique au bord au sens de l'inclusion de trace. Nous montrons des résultats d'existence qui dépendent des différents<br />coefficients des EDP étudiées et de la courbure moyenne en un point minimum de poids.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00138957 |
Date | 27 January 2006 |
Creators | Yazidi, Habib |
Publisher | Université Paris XII Val de Marne |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds