• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de quelques EDP non linéaires sans compacité

Yazidi, Habib 27 January 2006 (has links) (PDF)
Cette thèse est consacrée à l'étude de quelques équations aux dérivées partielles non linéaires de type Dirichlet ou Neumann sur un domaine borné régulier, qui sont à structure variationnelle, et<br />qui présentent un défaut de compacité.<br />Dans la première partie, nous étudions une EDP homogène avec un opérateur non linéaire faisant<br />intervenir un poids strictement positif, une non-linéarité critique au sens de Sobolev et un paramètre $\lambda$. Nous établissons des résultats d'existence et de non-existence de solutions qui dépendent du comportement du poids au voisinage de ses minima, du paramètre $\lambda$ et de la géométrie du domaine. Dans la seconde partie, nous nous intéressons à des EDP non homogènes avec poids et avec une non-linéarité critique au bord au sens de l'inclusion de trace. Nous montrons des résultats d'existence qui dépendent des différents<br />coefficients des EDP étudiées et de la courbure moyenne en un point minimum de poids.
2

SUR LES SYSTEMES ELLIPTIQUES QUASI-LINEAIRES ET ANISOTROPIQUES AVEC EXPOSANTS CRITIQUES DE SOBOLEV.

Adriouch, Khalid 13 July 2007 (has links) (PDF)
L'objectif de cette thèse est d'étudier l'existence, la multiplicité et le comportement des solutions positives de systèmes d'équations aux dérivées <br />partielle faisant intervenir le (p,q)-Laplacien ou des opérateurs anisotropiques dans les cas sous-critique et critique.<br /> Dans le 1er chapitre on s' intéresse au système suivant (S):<br />\begin{eqnarray}<br />\left\{\begin{array}{lll}-\Delta_p u&=&\lambda f(x,u,v)\quad\mbox{dans}\quad\Omega,\\<br />-\Delta_q v&=&\mu g(x,u,v)\quad\mbox{dans}\quad\Omega,<br />\end{array}<br />\right.<br />\end{eqnarray}<br />avec $f$ et $g$ présentent des termes sous-critiques en u et v . On a pu construire deux suites de Palais-Smale sur la variété de Nehari convergeant <br />fortement dans $W{1,p}(\Omega)\times W{1,q}(\Omega)$ vers deux solutions distinctes.<br /> Dans le 2ème chapitre, on considère la même classe du système (S) dans le cas critique et dans $\mathbb{R}^N$. A la différence du chapitre 1, dans <br />ce cas on retrouve qu'une seule solution positive et pour $p=q$ on retrouve une seconde solution.<br /> Dans le chapitre 3, on généralise l'étude de Brézis-Nirenberg à une équation et puis à un système critique du type (S). On donne une définition plus générale de la notion de niveau critique.<br /> Le Dernier chapitre traîte d'une nouvelle classe de systèmes d'équations elliptiques anisotropiques (puissance dépend de la direction) avec des termes de réaction de type puissance de façon que l'espace fonctionnel naturel devient un espace de Sobolev anisotrope. On démontre l'existence ainsi que la régularité des solutions faibles du système puis l'existence d'une solution dans le cas où on a une sous et une sur-solution du système.
3

Théorèmes de point fixe et principe variationnel d'Ekeland

Dazé, Caroline 02 1900 (has links)
Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000. / The Banach contraction principle, which certifies that a contraction of a complete metric space into itself has a fixed point, is for sure the most famous of all fixed point theorems. However, in many case, the contraction we consider is only defined on a subset of a complete metric space. Of course, to certify that such a contraction has a fixed point, we need to add some restrictions. The Caristi theorem, which certifies the existence of a fixed point of a function of a complete metric space into itself satisfying a particular condition on d(x,f(x)), was later generalized to multivalued functions. By introducing different types of inwardness assumptions, we will be able to state some fixed point theorems for multivalued functions defined on a subset of a metric space. This is related to the recent work of French and Polish mathematicians. We were able to generalize some theorems to Fréchet spaces and gauge spaces such as the Caristi theorems and the Ekeland variational principle. We were also able to generalize some fixed point theorems for functions that are only defined on a subset of a Fréchet space or a gauge space. To do so, we used new types of contractions; contractions on Fréchet spaces introduced by Cain and Nashed [CaNa] in 1971 and generalized contractions on gauge spaces introduced by Frigon [Fr] in 2000.
4

Théorèmes de point fixe et principe variationnel d'Ekeland

Dazé, Caroline 02 1900 (has links)
Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000. / The Banach contraction principle, which certifies that a contraction of a complete metric space into itself has a fixed point, is for sure the most famous of all fixed point theorems. However, in many case, the contraction we consider is only defined on a subset of a complete metric space. Of course, to certify that such a contraction has a fixed point, we need to add some restrictions. The Caristi theorem, which certifies the existence of a fixed point of a function of a complete metric space into itself satisfying a particular condition on d(x,f(x)), was later generalized to multivalued functions. By introducing different types of inwardness assumptions, we will be able to state some fixed point theorems for multivalued functions defined on a subset of a metric space. This is related to the recent work of French and Polish mathematicians. We were able to generalize some theorems to Fréchet spaces and gauge spaces such as the Caristi theorems and the Ekeland variational principle. We were also able to generalize some fixed point theorems for functions that are only defined on a subset of a Fréchet space or a gauge space. To do so, we used new types of contractions; contractions on Fréchet spaces introduced by Cain and Nashed [CaNa] in 1971 and generalized contractions on gauge spaces introduced by Frigon [Fr] in 2000.
5

Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculus

Bourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.

Page generated in 0.1443 seconds