• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non linear, non-local evolution equations : theory and application / Equations d'évolution non-linéaires non-locales : théorie et applications

Nabti, Abderrazak 16 December 2015 (has links)
Cette thèse concerne l’étude qualitative (existence locale, existence globale, explosion en temps fini) de quelques équations de Schrödinger non-linéaires non-locales. Dans le cas où les solutions explosent en temps fini, l’estimation du temps maximal d’existence des solutions sera présentée. Le chapitre 1 concerne l’étude d’une équation de Schrödinger non-linéaire sur RN. On s’intéresse à l’existence locale d’une solution pour toute condition initiale donnée dans L2(RN). De plus, on montre que la norme-L2 de la solution explose en temps fini T < 1. Les démonstrations reposent essentiellement sur le théorème de point fixe de Banach et les estimations de Strichartz, et aussi sur le choix convenable de la fonction test dans la formulation faible du problème. Dans le chapitre 2, on considère une équation de Schrödinger non-linéaire non-locale en temps, et on démontre que les solutions de notre problème explosent en temps fini ; ensuite on obtient des conditions nécessaires d’existence globale. Finalement, on obtient une borne inférieure du temps maximal d’existence de la solution. Le chapitre 3 porte sur la non-existence de solutions d’une équation de Schrödinger non-linéaire posée dans RN. Dans un premier temps, sous certaines conditions sur la donnée initiale, on montre qu’il n’existe pas de solution faible globale ; puis on donne une estimation du temps maximal d’existence de la solution. Enfin, on établit des conditions d’existence locale, ou globale de l’équation considérée. En plus, on généralise les résultats précédents au cas d’un système 2 _ 2. Le dernier chapitre traite une équation de Schrödinger non-linéaire non-locale en temps sur le groupe de Heisenberg H. En utilisant la méthode de la fonction test, on démontre que l’équation n’admet pas de solution faible globale. De plus, on obtient, sous certaines conditions sur les données initiales, une estimation inférieure du temps maximal d’existence de la solution. / Our objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions.
2

Définition et réglage de correcteurs robustes d'ordre fractionnaire / Definition and tuning of robust fractional order controllers

Tenoutit, Mammar 01 July 2013 (has links)
Les applications du calcul fractionnaire en automatique se sont considérablement développées ces dernières années, surtout en commande robuste. Ce mémoire est une contribution à la commande robuste des systèmes d'ordre entier à l'aide d'un correcteur PID d'ordre fractionnaire.Le conventionnel régulateur PID, unanimement apprécié pour le contrôle des processus industriels, a été adapté au cas fractionnaire sous la forme PInDf grâce à l'introduction d'un modèle de référence d'ordre non entier, réputé pour sa robustesse vis-à-vis des variations du gain statique.Cette nouvelle structure a été étendue aux systèmes à retard sous la forme d'un Prédicteur de SMITH fractionnaire. Dans leur forme standard, ces correcteurs sont adaptés à la commande des systèmes du premier et du second ordre, avec ou sans retard pur.Pour des systèmes plus complexes, deux méthodologies de synthèse du correcteur ont été proposées, grâce à la méthode des moments et à l'approche retour de sortie.Pour les systèmes dont le modèle est obtenu à partir d'une identification, la boucle fermée doit en outre être robuste aux erreurs d'estimation. Un modèle pire-cas, déduit de la matrice de covariance de l'estimateur et des domaines d'incertitudes fréquentielles, a été proposé pour la synthèse du correcteur.Les différentes simulations numériques montrent l'efficacité de cette méthodologie pour l'obtention d'une boucle fermée robuste aux variations du gain statique et aux incertitudes d'identification. / The application of fractional calculus in automatic control have received much attention these last years, mainly in robust control. This PhD dissertation is a contribution to the control of integer order systems using a fractional order PID controller.The classical PID, well known for its applications to industrial plants, has been adapted to the fractional case as a PInDf controller, thanks to a fractional order reference model, characterized by its robustness to static gain variations.This new controller has been generalized to time delay systems as a fractional SMITH Predictor. In standard case, these controllers are adapted to first and second order systems, with or without a time delay. For more complex systems, two design methodologies have been proposed, based on the method of moments and on output feedback approach.For systems whose model is obtained by an identification procedure, the closed loop has to be robust to estimation errors. So, a worst-case model, derived from the covariance matrix of the estimator and the frequency uncertainty domains, has been proposed for the design of the controller.The different numerical simulations demonstrate that this methodology is able to provide robustness to static gain variations and to identification uncertainties.
3

Contributions aux équations d'évolution frac-différentielles / Contributions to frac-differential evolution equations

Lassoued, Rafika 08 January 2016 (has links)
Dans cette thèse, nous nous sommes intéressés aux équations différentielles fractionnaires. Nous avons commencé par l'étude d'une équation différentielle fractionnaire en temps. Ensuite, nous avons étudié trois systèmes fractionnaires non linéaires ; le premier avec un Laplacien fractionnaire et les autres avec une dérivée fractionnaire en temps définie au sens de Caputo. Dans le premier chapitre, nous avons établi les propriétés qualitatives de la solution d'une équation différentielle fractionnaire en temps qui modélise l'évolution d'une certaine espèce. Plus précisément, l'existence et l'unicité de la solution globale sont démontrées pour certaines valeurs de la condition initiale. Dans ce cas, nous avons obtenu le comportement asymptotique de la solution en t^α. Sous une autre condition sur la donnée initiale, la solution explose en temps fini. Le profil de la solution et l'estimation du temps d'explosion sont établis et une confirmation numérique de ces résultats est présentée. Les chapitres 4, 5 et 6 sont consacrés à l'étude théorique de trois systèmes fractionnaires : un système de la diffusion anormale qui décrit la propagation d'une épidémie infectieuse de type SIR dans une population confinée, le Brusselator avec une dérivée fractionnaire en temps et un système fractionnaire en temps avec une loi de balance. Pour chaque système, on présente l'existence globale et le comportement asymptotique des solutions. L'existence et l'unicité de la solution locale pour les trois systèmes sont obtenues par le théorème de point fixe de Banach. Cependant, le comportement asymptotique est établi par des techniques différentes : le comportement asymptotique de la solution du premier système est démontré en se basant sur les estimations du semi-groupe et le théorème d'injection de Sobolev. Concernant le Brusselator fractionnaire, la technique utilisée s'appuie sur un argument de feedback. Finalement, un résultat de régularité maximale est utilisé pour l'étude du dernier système. / In this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system.
4

Equations aux dérivées fractionnaires : propriétés et applications / Fractional differential equations : properties and applications

Hnaien, Dorsaf 21 September 2015 (has links)
Notre objectif dans cette thèse est l'étude des équations différentielles non linéaires comportant des dérivées fractionnaires en temps et/ou en espace. Nous nous sommes intéressés dans un premier temps à l'étude de deux systèmes non linéaires d'équations différentielles fractionnaires en temps et/ou en espace, puis à l'étude d'une équation différentielle fractionnaire en temps. Plus exactement pour la première partie, les questions concernant l'existence globale et le comportement asymptotique des solutions d'un système non linéaire d'équations différentielles comportant des dérivées fractionnaires en temps et en espace sont élucidées. Les techniques utilisées reposent sur des estimations obtenues pour les solutions fondamentales et la comparaison de certaines inégalités fractionnaires. Toujours dans la première partie, l'étude d'un système non linéaire d'équations de réaction-diffusion avec des dérivées fractionnaires en espace est abordée. L'existence locale et l'unicité des solutions sont prouvées à l'aide du théorème du point fixe de Banach. Nous montrons que les solutions sont bornées et analysons leur comportement à l'infini. La deuxième partie est consacrée à l'étude d'une équation différentielle fractionnaire non linéaire. Sous certaines conditions sur la donnée initiale, nous montrons que la solution est globale alors que sous d'autres, elle explose en temps fini. Dans ce dernier cas, nous donnons son profil ainsi que des estimations bilatérales du temps d'explosion. Alors que pour la solution globale nous étudions son comportement asymptotique. / Our objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior.
5

Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculus

Bourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.

Page generated in 0.1051 seconds