• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions aux équations aux dérivées fractionnaires et au traitement d'images / Contributions to fractional differential equations and treatment of images

Malik, Salman Amin 20 September 2012 (has links)
Dans cette thèse, nous nous intéressons aux équations aux dérivées fractionnaires et leurs applications au traitement d'images. Une attention particulière a été apportée à un système non linéaire d'équations différentielles fractionnaires. En particulier, nous avons étudié les propriétés qualitatives des solutions d'un système non linéaire d'équations différentielles fractionnaires qui explosent en temps fini. L'existence des solutions locales pour le système, le profil des solutions qui explosent en temps fini sont présentés. Nous étudierons le problème inverse pour l'équation de diffusion linéaire en une dimension et en deux dimensions. Nous sommes intéressés par trouver un terme source inconnu d'une équation de diffusion non locale. Les conditions aux limites considérées sont non locales et le problème spectral est non auto-adjoint. L'existence et l'unicité de la solution du problème inverse sont présentées.D'autre part, nous proposons un modèle basé sur l'équation de la chaleur linéaire avec une dérivée fractionnaire en temps pour le débruitage d'images numériques. L'approche utilise une technique de pixel par pixel, ce qui détermine la nature du filtre. En contraste avec certain modèles basés sur les équations aux dérivées partielles pour le débruitage de l'image, le modèle proposé est bien posé et le schéma numérique est convergent. Une amélioration de notre modèle proposé est suggéré. / In this thesis we study a nonlinear system of fractional differential equations with power nonlinearities; the solution of the system blows up in a finite time. We provide the profile of the blowing-up solutions of the system by finding upper and lower estimates of the solution. Moreover, bilateral bounds on the blow-up time are given.We consider the inverse problem concerning a linear time fractional diffusion equation for the determination of the source term (supposed to be independent of the time variable) and temperature distribution from initial and final temperature data. The uniqueness and existence of the continuous solution of the inverse problem is proved. We also consider the inverse source problem for a two dimensional fractional diffusion equation. The results about the existence, uniqueness and continuous dependence of the solution of the inverse problem on the data are presented.We apply the linear heat equation involving a fractional derivative in time for denoising (simplification, smoothing, restoration or enhancement) of digital images. The order of the fractional derivative has been used for controling the diffusion process, which in result preserves the fine structures in the image during denoising process. Furthermore, an improvement in the proposed model is suggested by using the structure tensor of the images.
2

Equations aux dérivées fractionnaires : propriétés et applications / Fractional differential equations : properties and applications

Hnaien, Dorsaf 21 September 2015 (has links)
Notre objectif dans cette thèse est l'étude des équations différentielles non linéaires comportant des dérivées fractionnaires en temps et/ou en espace. Nous nous sommes intéressés dans un premier temps à l'étude de deux systèmes non linéaires d'équations différentielles fractionnaires en temps et/ou en espace, puis à l'étude d'une équation différentielle fractionnaire en temps. Plus exactement pour la première partie, les questions concernant l'existence globale et le comportement asymptotique des solutions d'un système non linéaire d'équations différentielles comportant des dérivées fractionnaires en temps et en espace sont élucidées. Les techniques utilisées reposent sur des estimations obtenues pour les solutions fondamentales et la comparaison de certaines inégalités fractionnaires. Toujours dans la première partie, l'étude d'un système non linéaire d'équations de réaction-diffusion avec des dérivées fractionnaires en espace est abordée. L'existence locale et l'unicité des solutions sont prouvées à l'aide du théorème du point fixe de Banach. Nous montrons que les solutions sont bornées et analysons leur comportement à l'infini. La deuxième partie est consacrée à l'étude d'une équation différentielle fractionnaire non linéaire. Sous certaines conditions sur la donnée initiale, nous montrons que la solution est globale alors que sous d'autres, elle explose en temps fini. Dans ce dernier cas, nous donnons son profil ainsi que des estimations bilatérales du temps d'explosion. Alors que pour la solution globale nous étudions son comportement asymptotique. / Our objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior.

Page generated in 0.0966 seconds