Spelling suggestions: "subject:"schaeffler’s functions"" "subject:"steffler’s functions""
1 |
Equations aux dérivées fractionnaires : propriétés et applications / Fractional differential equations : properties and applicationsHnaien, Dorsaf 21 September 2015 (has links)
Notre objectif dans cette thèse est l'étude des équations différentielles non linéaires comportant des dérivées fractionnaires en temps et/ou en espace. Nous nous sommes intéressés dans un premier temps à l'étude de deux systèmes non linéaires d'équations différentielles fractionnaires en temps et/ou en espace, puis à l'étude d'une équation différentielle fractionnaire en temps. Plus exactement pour la première partie, les questions concernant l'existence globale et le comportement asymptotique des solutions d'un système non linéaire d'équations différentielles comportant des dérivées fractionnaires en temps et en espace sont élucidées. Les techniques utilisées reposent sur des estimations obtenues pour les solutions fondamentales et la comparaison de certaines inégalités fractionnaires. Toujours dans la première partie, l'étude d'un système non linéaire d'équations de réaction-diffusion avec des dérivées fractionnaires en espace est abordée. L'existence locale et l'unicité des solutions sont prouvées à l'aide du théorème du point fixe de Banach. Nous montrons que les solutions sont bornées et analysons leur comportement à l'infini. La deuxième partie est consacrée à l'étude d'une équation différentielle fractionnaire non linéaire. Sous certaines conditions sur la donnée initiale, nous montrons que la solution est globale alors que sous d'autres, elle explose en temps fini. Dans ce dernier cas, nous donnons son profil ainsi que des estimations bilatérales du temps d'explosion. Alors que pour la solution globale nous étudions son comportement asymptotique. / Our objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior.
|
Page generated in 0.0968 seconds