• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non linear, non-local evolution equations : theory and application / Equations d'évolution non-linéaires non-locales : théorie et applications

Nabti, Abderrazak 16 December 2015 (has links)
Cette thèse concerne l’étude qualitative (existence locale, existence globale, explosion en temps fini) de quelques équations de Schrödinger non-linéaires non-locales. Dans le cas où les solutions explosent en temps fini, l’estimation du temps maximal d’existence des solutions sera présentée. Le chapitre 1 concerne l’étude d’une équation de Schrödinger non-linéaire sur RN. On s’intéresse à l’existence locale d’une solution pour toute condition initiale donnée dans L2(RN). De plus, on montre que la norme-L2 de la solution explose en temps fini T < 1. Les démonstrations reposent essentiellement sur le théorème de point fixe de Banach et les estimations de Strichartz, et aussi sur le choix convenable de la fonction test dans la formulation faible du problème. Dans le chapitre 2, on considère une équation de Schrödinger non-linéaire non-locale en temps, et on démontre que les solutions de notre problème explosent en temps fini ; ensuite on obtient des conditions nécessaires d’existence globale. Finalement, on obtient une borne inférieure du temps maximal d’existence de la solution. Le chapitre 3 porte sur la non-existence de solutions d’une équation de Schrödinger non-linéaire posée dans RN. Dans un premier temps, sous certaines conditions sur la donnée initiale, on montre qu’il n’existe pas de solution faible globale ; puis on donne une estimation du temps maximal d’existence de la solution. Enfin, on établit des conditions d’existence locale, ou globale de l’équation considérée. En plus, on généralise les résultats précédents au cas d’un système 2 _ 2. Le dernier chapitre traite une équation de Schrödinger non-linéaire non-locale en temps sur le groupe de Heisenberg H. En utilisant la méthode de la fonction test, on démontre que l’équation n’admet pas de solution faible globale. De plus, on obtient, sous certaines conditions sur les données initiales, une estimation inférieure du temps maximal d’existence de la solution. / Our objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions.
2

Contributions aux équations d'évolution frac-différentielles / Contributions to frac-differential evolution equations

Lassoued, Rafika 08 January 2016 (has links)
Dans cette thèse, nous nous sommes intéressés aux équations différentielles fractionnaires. Nous avons commencé par l'étude d'une équation différentielle fractionnaire en temps. Ensuite, nous avons étudié trois systèmes fractionnaires non linéaires ; le premier avec un Laplacien fractionnaire et les autres avec une dérivée fractionnaire en temps définie au sens de Caputo. Dans le premier chapitre, nous avons établi les propriétés qualitatives de la solution d'une équation différentielle fractionnaire en temps qui modélise l'évolution d'une certaine espèce. Plus précisément, l'existence et l'unicité de la solution globale sont démontrées pour certaines valeurs de la condition initiale. Dans ce cas, nous avons obtenu le comportement asymptotique de la solution en t^α. Sous une autre condition sur la donnée initiale, la solution explose en temps fini. Le profil de la solution et l'estimation du temps d'explosion sont établis et une confirmation numérique de ces résultats est présentée. Les chapitres 4, 5 et 6 sont consacrés à l'étude théorique de trois systèmes fractionnaires : un système de la diffusion anormale qui décrit la propagation d'une épidémie infectieuse de type SIR dans une population confinée, le Brusselator avec une dérivée fractionnaire en temps et un système fractionnaire en temps avec une loi de balance. Pour chaque système, on présente l'existence globale et le comportement asymptotique des solutions. L'existence et l'unicité de la solution locale pour les trois systèmes sont obtenues par le théorème de point fixe de Banach. Cependant, le comportement asymptotique est établi par des techniques différentes : le comportement asymptotique de la solution du premier système est démontré en se basant sur les estimations du semi-groupe et le théorème d'injection de Sobolev. Concernant le Brusselator fractionnaire, la technique utilisée s'appuie sur un argument de feedback. Finalement, un résultat de régularité maximale est utilisé pour l'étude du dernier système. / In this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system.

Page generated in 0.0957 seconds