The research investigates several critical design issues of continuous-time (CT) [Sigma Delta] modulators. The first is to investigate the sensitivity of CT [Sigma Delta] modulators to high-frequency clock spurs. These spurs down-convert the high-frequency quantization noise, degrading the dynamic range of the modulator. The second is to study the robustness of continuous-time loop filters under large RC product variations. Large RC variations in the CMOS process strongly degrade the performance of continuous-time [Sigma Delta] modulators, and reduce the production yield. The third is to model the harmonic distortion of one-bit continuous-time [Sigma Delta] modulators due to the interaction between the first integrator and the feedback digital-to-analog converter (DAC). A closed-form expression of the 3'rd-order harmonic distortion is derived and verified. Conventional CT [Sigma Delta] modulators employ all active integrators: each integrator needs an active amplifier. The research proposes a 5th-order continuous-time [Sigma Delta] modulator with a hybrid active-passive loop filter consisting of only three amplifiers. The passive integrators save power, and introduce no distortion. The active integrators provide gain and minimize internal noise contributions. A single-bit switched-capacitor DAC is employed as the main feedback DAC for high clock jitter immunity. An additional current steering DAC stabilizes the loop with the advantage of simplicity. To verify the proposed techniques, a prototype continuous-time [Sigma Delta] modulator with 2-MHz signal bandwidth is designed in a 0.25-¹m CMOS technology targeting for GPS or WCDMA applications. The experimental results show that the prototype modulator achieves 68-dB dynamic range over 2-MHz bandwidth with a 150-MHz clock, consuming 1.8 mA from a 1.5-V supply.
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3698 |
Date | 29 August 2008 |
Creators | Song, Tongyu |
Contributors | Yan, Shouli |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | electronic |
Rights | Copyright © is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0052 seconds