Return to search

Étude du comportement visco-plastique du dioxyde d'uranium : quantification par analyse EBSD et ECCI des effets liés aux conditions de sollicitation et à la microstructure initiale / Study of the visco-plastic behavior of uranium dioxide : quantification by EBSD and ECCI analysis of the effects related to the stress conditions and the initial microstructure

Le dioxyde d’uranium (UO2) est utilisé en tant que combustible, sous forme de pastilles élaborées par métallurgie des poudres, dans les réacteurs nucléaires à eau pressurisée. Lors de transitoires de puissance, le centre des pastilles est le siège de mécanismes de déformation visco-plastique qui peuvent être partiellement reproduits, hors irradiation, par des essais de compression uniaxiale à haute température (typiquement 1500°C). Les conditions de sollicitation et la microstructure initiale des pastilles d’UO2 ont une influence sur leur comportement mécanique macroscopique. A l’échelle des grains, des mécanismes de sous-structuration interviennent mais, à ce jour, la sous-structure n’est pas quantifiée et le rôle des pores sur ces mécanismes n’est pas connu. Afin d’apporter des réponses sur ces points, deux lots de pastilles (L1 et L2) de taille de grains similaires, de même fraction volumique de pores, mais ceux-ci étant distribués différemment (2,5 fois plus de pores intra-granulaires dans L1 que dans L2), ont été fabriqués. Ils ont ensuite été soumis à des essais mécaniques dans différentes conditions. Le résultat montre que le lot L2 présente une vitesse de fluage plus élevée que le lot L1. Les techniques Electron BackScatter Diffraction (EBSD) et Electron Channeling Contrast Imaging (ECCI) ont été mises en œuvre et optimisées pour suivre l’évolution de la microstructure après déformation. En EBSD, le développement d’une procédure adaptée aux matériaux poreux a permis de détecter des sous-joints de grains (S-JG) de très faible désorientation (jusqu’à 0,1°), de mener une étude statistique de l'évolution de la sous-structuration des grains et d'évaluer la densité de dislocations géométriquement nécessaires générées. Différents types d’arrangements de dislocations formant les S-JG ont été révélés et analysés par ECCI. Grâce à la complémentarité de l’EBSD et de l’ECCI, la répartition des pores dans les grains et la localisation des S-JG ont pu être mises en regard. Les résultats montrent que le nombre ainsi que la fraction linéaire des S-JG et leur désorientation augmente avec le taux et la vitesse de déformation. Aux forts taux de déformation, cela conduit à la formation de nouveaux grains par un mécanisme de restauration/recristallisation dynamique par rotation de sous-grains. Pour des conditions de sollicitation identiques, les échantillons du lot L1 présentent un nombre et une fraction linéaire de S-JG nettement supérieurs à ceux du lot L2. De plus, dans le lot L1, les S-JG se localisent essentiellement à proximité des joints de grains alors qu’ils sont répartis dans l’ensemble du grain pour le lot L2. Ces différences seraient liées à une réduction du libre parcours moyen des dislocations du fait de la présence des pores intra-granulaires / Uranium dioxide (UO2) is used as a fuel, in pressurized water nuclear reactors, in the form of pellets produced by powder metallurgy. During power transients, the center part of pellets undergoes visco-plastic deformation by creep mechanisms. These mechanisms can be partially reproduced, out of irradiation, by uniaxial compression tests at high temperature (typically 1500°C). Testing conditions and initial microstructure of the UO2 pellets influence their macroscopic mechanical behavior. At the grain scale, sub-structuring mechanisms are involved, but, up to now, the sub-structure is not quantified and the role of pores on these mechanisms is unknown. In order to provide answers to these points, two batches of pellets (L1 and L2), characterized by a similar grain size, a same volume fraction of pores, but different pores distribution (2.5 times more intra-granular pores in L1 than in L2), were elaborated. They were submitted to mechanical tests under different conditions. The result shows that L1 has as a lower creep rate than L2. Electron Backscatter Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI) techniques were used and optimized for porous materials to analyze the evolution of the microstructure after deformation. An original EBSD methodology was implemented to detect Sub-Grain Boundaries (S-GB) with very low disorientation angles (down to 0.1°), study statistically the grain fragmentation into sub-grains and evaluate the average density of the geometrically necessary dislocations. Thanks to ECCI, the arrangement of dislocations in some S-GB was evidenced and analyzed. EBSD and ECCI complementarity allowed relating the distribution of pores within the grains and the S-GB location. The results obtained on the two batches show that the number and the linear fraction of S-GB increases with the deformation level and rate. At high deformation rates, new grains appear by a mechanism of dynamic recovery/recrystallization by rotation of sub-grains. For identical loading conditions and strain rates, the samples of batch L1 have a number and a linear fraction of S-GB that are significantly higher than those of batch L2. Furthermore, in batch L1, S-GB are located essentially in the vicinity of the grain boundaries while they are distributed throughout the grain for batch L2. These microstructural differences seem to be related to a dislocation's mean free path reduction due to the presence of intra-granular pores

Identiferoai:union.ndltd.org:theses.fr/2017LORR0270
Date12 December 2017
CreatorsBen Saada, Mariem
ContributorsUniversité de Lorraine, Maloufi, Nabila, Gey, Nathalie
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds