Continues field monitoring and searching sensor data remains an imminent element emphasizes the influence of the Internet of Things (IoT). Most of the existing systems are concede spatial coordinates or semantic keywords to retrieve the entail data, which are not comprehensive constraints because of sensor cohesion, unique localization haphazardness. To address this issue, we propose deep learning inspired sensor-rank consolidation (DLi-SRC) system that enables 3-set of algorithms. First, sensor cohesion algorithm based on Lyapunov approach to accelerate sensor stability. Second, sensor unique localization algorithm based on rank-inferior measurement index to avoid redundancy data and data loss. Third, a heuristic directive algorithm to improve entail data search efficiency, which returns appropriate ranked sensor results as per searching specifications. We examined thorough simulations to describe the DLi-SRC effectiveness. The outcomes reveal that our approach has significant performance gain, such as search efficiency, service quality, sensor existence rate enhancement by 91%, and sensor energy gain by 49% than benchmark standard approaches.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-11010 |
Date | 01 January 2021 |
Creators | Mekala, M. S., Rizwan, Patan, Khan, Mohammad S. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0021 seconds