Return to search

Résolution des équations de Maxwell-Vlasov sur maillage cartésien non conforme 2D par un solveur Galerkin discontinu / Resolution of Maxwell-Vlasov equations on 2D non conforming cartesian mesh by a discontinuous Galerkin method

Cette thèse propose l’étude d’une méthode numérique permettant de simuler un plasma. On considère un ensemble de particules, dont le mouvement est régi par l’équation de Vlasov, et qui est sensible aux forces électromagnétiques, qui proviennent des équations de Maxwell. La résolution numérique des équations de Vlasov-Maxwell est réalisée par une méthode Particle In Cell (PIC). La résolution des équations de Maxwell nécessite un maillage suffisamment fin afin de modéliser correctement les problémes multi-échelles que nous souhaitons traiter. Cependant, mailler finement tout le domaine de calcul a un coût. La nouveauté de cette thèse est de proposer un solveur PIC sur des maillages cartésiens localement raffinés, des maillages non conformes, afin de garantir la bonne modélisation du phénomène physique et d’éviter une trop forte pénalisation des temps de calcul.Nous utilisons une méthode Galerkin Discontinue en domaine temporelle (GDDT), qui offre l’avantage d’être d'une grande flexibilité dans le choix du maillage et qui est une méthode d’ordre élevé. Un point fondamental dans l’étude des solveurs PIC concerne le respect de la conservation de la charge. Nous proposons deux approches afin de traiter cet aspect. La première concerne les méthodes utilisant un système de Maxwell augmenté, dont la nouveauté a été de les étendre aux maillages non conformes. La seconde approche repose sur une méthode originale de pré-traitement du calcul du terme source de courant. / This thesis deals with the study of a numerical method to simulate a plasma. We consider a set of particles whose displacement is governed by the Vlasov equation and which creates an electromagnetic field thanks to Maxwell equations. The numerical resolution of the Vlasov-Maxwell system is performed by a Particle In Cell (PIC) method. The resolution of Maxwell equations needs a sufficiently fine mesh to correctly simulate the multi scaled problems that we have to face. Yet, a uniform fine mesh of the whole domain has a prohibitive cost. The novelty of this thesis is a PIC solver on locally refined Cartesian meshes : non conforming meshes, to guarantee the good modeling of the physical phenomena and to avoid too large CPU time. We use the Discontinuous Galerkin in Time Domain (DGTD) method which has the advantage of a great flexibility in the choice of the mesh and which is a high order method. A fundamental point in the study of PIC solvers is the respect of the charge conserving law. We propose two approaches to tackle this point. The first one deals with augmented Maxwell systems, that we have adapted to non conforming meshes. The second one deals with an original method of preprocessing of the calculation of the current source term.

Identiferoai:union.ndltd.org:theses.fr/2014STRAD028
Date19 November 2014
CreatorsMounier, Marie
ContributorsStrasbourg, Sonnendrücker, Eric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds