Spelling suggestions: "subject:"maillages none conforme"" "subject:"maillages none conformed""
1 |
Schémas volumes finis pour des opérateurs de diffusion anisotropes hétérogènes sur des maillages non-conformesOng, Thanh Hai 13 November 2012 (has links) (PDF)
Nous présentons de nouveaux schémas numériques pour l'approximation de problèmes de diffusion hétérogène et anisotrope sur des maillages généraux. Sous des hypothèses correspondant aux cas industriels, nous montrons qu'un premier schéma, qui est centré sur les mailles, possède un petit stencil et converge dans le cas de tenseurs discontinus. La preuve de la convergence repose sur des propriétés de consistance des gradients discrets issus du schéma. Dans une seconde partie, nous proposons des méthodes de correction non linéaire du schéma initial pour obtenir le principe du maximum. L'efficacité de ces schémas est étudiée sur des tests numériques ayant fait l'objet de bancs d'essais d'une grande variété de schémas de volumes finis. Les comparaisons avec les schémas volumes finis classiques montrent l'apport de ces schémas en termes de précision. Nous montrons ainsi le bon comportement de ces schémas sur des maillages déformés, et le maintien de la précision des schémas non-linéaires, alors que les oscillations ont été supprimées.
|
2 |
Finite volume schemes for anisotropic and heterogeneous diffusion operators on non-conforming meshes / Schémas volumes finis pour des opérateurs de diffusion anisotropes hétérogènes sur des maillages non-conformesOng, Thanh Hai 13 November 2012 (has links)
Nous présentons de nouveaux schémas numériques pour l'approximation de problèmes de diffusion hétérogène et anisotrope sur des maillages généraux. Sous des hypothèses correspondant aux cas industriels, nous montrons qu'un premier schéma, qui est centré sur les mailles, possède un petit stencil et converge dans le cas de tenseurs discontinus. La preuve de la convergence repose sur des propriétés de consistance des gradients discrets issus du schéma. Dans une seconde partie, nous proposons des méthodes de correction non linéaire du schéma initial pour obtenir le principe du maximum. L'efficacité de ces schémas est étudiée sur des tests numériques ayant fait l'objet de bancs d'essais d'une grande variété de schémas de volumes finis. Les comparaisons avec les schémas volumes finis classiques montrent l'apport de ces schémas en termes de précision. Nous montrons ainsi le bon comportement de ces schémas sur des maillages déformés, et le maintien de la précision des schémas non-linéaires, alors que les oscillations ont été supprimées / We present a new scheme for the discretization of heterogeneous anisotropic diffusion problems on general meshes. With light assumptions, we show that the algorithm can be written as a cell-centered scheme with a small stencil and that it is convergent for discontinuous tensors. The key point of the proof consists in showing both the strong and the weak consistency of the method. Besides, we study non-linear corrections to correct the FECC scheme, in order to satisfy the discrete maximum principle (DMP).The efficiency of the scheme is demonstrated through numerical tests of the 5th & 6th International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6. Moreover, the comparison with classical finite volume schemes emphasizes the precision of the method. We also show the good behaviour of the algorithm for nonconforming meshes. In addition, we give some numerical tests to check the existence for the non-linear FECC schemes
|
3 |
DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDESDelcourte, Sarah 26 September 2007 (has links) (PDF)
Le but de cette thèse est de développer une méthode de volumes finis qui s'applique à une classe de maillages beaucoup plus grande que celle des méthodes classiques, limitées par des conditions d'orthogonalité très restrictives. On construit des opérateurs différentiels discrets agissant sur les trois maillages décalés nécessaires à la construction de la méthode. Ces opérateurs vérifient des propriétés discrètes analogues à celles des opérateurs continus. La méthode est tout d'abord appliquée au problème divergence-rotationnel qui peut etre considéré comme une brique du problème de Stokes. Ensuite, le problème de Stokes est discrétisé avec diverses conditions aux limites. Par ailleurs, il est bien connu que lorsque le domaine est polygonal et non-convexe, l'ordre de convergence des méthodes numériques se dégrade. Par conséquent, nous avons étudié sous quelles conditions un raffinement local approprié permet de restaurer l'ordre de convergence optimal. Enfin, nous avons discrétisé le problème non-linéaire de Navier-Stokes, en utilisant la formulation rotationnelle du terme de convection, associée à la pression de Bernoulli. Par un algorithme itératif, nous sommes amenés à résoudre un problème de point-selle à chaque itération, pour lequel nous testons quelques préconditionneurs issus des éléments finis, que l'on adapte (quand c'est possible) à la méthode. Chaque problème est illustré par des cas tests numériques sur des maillages "arbitraires", tels que des maillages fortement non-conformes.
|
4 |
La modélisation des failles conductrices pour les écoulements en milieux poreuxTunc, Xavier 15 February 2012 (has links)
Dans cette thèse, nous proposons un modèle pour le calcul des écoulements le long des failles. Ce modèle, baptisé modèle double interface permet de traiter deux difficultés majeures rencontrées lors de la modélisation des failles. Tout d'abord, l'utilisation d'un modèle interface, dans lequel les failles sont représentées par des éléments de dimension inférieure permet de s'affranchir du problème d'échelle spatiale. Ensuite, l'utilisation de deux interfaces pour représenter chaque faille permet de traiter naturellement les maillages non-conformes apparaissant dans ce type de problème. Les questions de failles non-planes et de réseaux de failles sont aussi abordées. Ce modèle est validé numériquement sur différents cas tests académiques et un cas synthétique inspiré du stockage du CO2 a aussi été réalisé. Finalement, une étude théorique a été menée afin de confirmer mathématiquement l'approche retenue. / In this thesis, we are interested in the modelisation of fluid flow along conductive faults. This model, so-called double interface model tackles two majors difficulties encountered when modelising faults. First of all, the use of an interface model, in which the faults are represented by lower dimension elements allows to treat the problem of space scale. Then, the use of two interfaces to modelise each fault allows to handle quite naturally the non-matching grid problem arising from this kind of problem. The question of non-planar fault and fault networks is also addressed. This model is then validated on several academic test cases and a synthetic case inspire by CO2 storage is also performed. Finally, a theoric study is also conducted in order to validate our approach.
|
5 |
Résolution des équations de Maxwell-Vlasov sur maillage cartésien non conforme 2D par un solveur Galerkin discontinu / Resolution of Maxwell-Vlasov equations on 2D non conforming cartesian mesh by a discontinuous Galerkin methodMounier, Marie 19 November 2014 (has links)
Cette thèse propose l’étude d’une méthode numérique permettant de simuler un plasma. On considère un ensemble de particules, dont le mouvement est régi par l’équation de Vlasov, et qui est sensible aux forces électromagnétiques, qui proviennent des équations de Maxwell. La résolution numérique des équations de Vlasov-Maxwell est réalisée par une méthode Particle In Cell (PIC). La résolution des équations de Maxwell nécessite un maillage suffisamment fin afin de modéliser correctement les problémes multi-échelles que nous souhaitons traiter. Cependant, mailler finement tout le domaine de calcul a un coût. La nouveauté de cette thèse est de proposer un solveur PIC sur des maillages cartésiens localement raffinés, des maillages non conformes, afin de garantir la bonne modélisation du phénomène physique et d’éviter une trop forte pénalisation des temps de calcul.Nous utilisons une méthode Galerkin Discontinue en domaine temporelle (GDDT), qui offre l’avantage d’être d'une grande flexibilité dans le choix du maillage et qui est une méthode d’ordre élevé. Un point fondamental dans l’étude des solveurs PIC concerne le respect de la conservation de la charge. Nous proposons deux approches afin de traiter cet aspect. La première concerne les méthodes utilisant un système de Maxwell augmenté, dont la nouveauté a été de les étendre aux maillages non conformes. La seconde approche repose sur une méthode originale de pré-traitement du calcul du terme source de courant. / This thesis deals with the study of a numerical method to simulate a plasma. We consider a set of particles whose displacement is governed by the Vlasov equation and which creates an electromagnetic field thanks to Maxwell equations. The numerical resolution of the Vlasov-Maxwell system is performed by a Particle In Cell (PIC) method. The resolution of Maxwell equations needs a sufficiently fine mesh to correctly simulate the multi scaled problems that we have to face. Yet, a uniform fine mesh of the whole domain has a prohibitive cost. The novelty of this thesis is a PIC solver on locally refined Cartesian meshes : non conforming meshes, to guarantee the good modeling of the physical phenomena and to avoid too large CPU time. We use the Discontinuous Galerkin in Time Domain (DGTD) method which has the advantage of a great flexibility in the choice of the mesh and which is a high order method. A fundamental point in the study of PIC solvers is the respect of the charge conserving law. We propose two approaches to tackle this point. The first one deals with augmented Maxwell systems, that we have adapted to non conforming meshes. The second one deals with an original method of preprocessing of the calculation of the current source term.
|
6 |
MAILLAGE CARTESIEN NON-CONFORME POUR LA METHODE TLM. APPLICATION A LA CONCEPTION DE RECTENNAS COMPACTESHoang, Thi Quynh Van 12 July 2012 (has links) (PDF)
Les travaux présentés dans cette thèse sont divisés en deux parties. La première partie est consacrée au développement d'un code de calcul électromagnétique basé sur la méthode TLM (Transmission Line Matrix) pour la modélisation des géométries très hétérogènes, nécessitant la prise en compte de maillages non-conformes localement raffinés. Cet aspect multi-échelle consiste à résoudre un problème de couplage spatio-temporel. Le couplage spatial est mis en œuvre en utilisant la technique des transformateurs introduite par Wlodarczyk. Notre effort s'est porté plus particulièrement sur le couplage temporel afin de pouvoir utiliser le pas temporel maximum dans chaque sous-maillage. Des techniques d'interpolation temporelle de type Taylor de second ordre et cubique Spline ainsi qu'une méthode de prédiction temporelle inspirée de la méthode de Prony-Pisarenko pour l'analyse spectrale ont été mises en œuvre et évaluées. La deuxième partie est consacrée à la conception de rectennas. Ces structures non linéaires, à la géométrie complexe et hétérogène, intégrant des diodes Schottky, sont les éléments clés des systèmes de transmission ou de récupération d'énergie sans fil. Leur simulation globale (circuit-électromagnétique) dans le domaine temporel par la TLM constitue un avantage par rapport aux logiciels commerciaux qui nécessitent des ajustements de certains paramètres SPICE par des réalisations et caractérisations expérimentales à priori, compliquant ainsi le processus de conception. Cela a permis de prédire avec précision le rendement de conversion d'une rectenna globale et de développer puis caractériser expérimentalement deux rectennas compactes fonctionnant à 2.45GHz.
|
7 |
Analyse et résolution numérique de méthodes de sous-domaines non conformes pour des problèmes de plaques.Lacour, Catherine 15 January 1997 (has links) (PDF)
Ce travail a pour objet l'étude d'une méthode de décomposition de domaines: la méthode des éléments avec joints. L'un des atouts de la méthode des él\éments avec joints, et une de ses premières motivations, est qu'elle offre la possibilité de traiter des géométries complexes et de raccorder des maillages non conformes. La méthode des éléments avec joints est une méthode sans recouvrement, parallélisable. De manière générale, une fois le domaine divisé en sous-domaines, on utilise sur chacun de ces sous-domaines une discrétisation en é\éments finis avec des maillages qui ne coincident pas aux interfaces. La méthode des éléments avec joints utilise une formulation hybride des équations du problème de départ qui repose sur l'introduction de multiplicateurs de Lagrange $\lambda$ pour traiter la contrainte de continuité aux interfaces entre les sous-domaines. Le problème hybride est résolu par la méthode du gradient conjugué. Afin de faciliter la convergence de ce solveur, différents préconditionneurs ont été étudiés. Le premier est une extension au cas non conforme du préconditionneur condensé, le deuxième est basé sur la construction de bases hiérarchiques de l'espace des multiplicateurs de Lagrange, le troisième est un préconditionneur par blocs. Finalement, une étude approfondie de l'extension de la méthode des éléments avec joints aux modèles de plaques D.K.T. a été réalis\ée du point de vue de l'analyse numérique (étude de la convergence) et de l'implémentation.
|
8 |
Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires.Brenner, Konstantin 08 November 2011 (has links) (PDF)
Les travaux de cette thèse portent sur des méthodes de volumes finis sur maillages quelconque pour la discrétisation de problèmes d'évolution non linéaires modélisant le transport de contaminants en milieu poreux et les écoulements diphasiques.Au Chapitre 1, nous étudions une famille de schémas numériques pour la discrétisation d'une équation parabolique dégénérée de convection-reaction-diffusion modélisant le transport de contaminants dans un milieu poreux qui peut être hétérogène et anisotrope. La discrétisation du terme de diffusion est basée sur une famille de méthodes qui regroupe les schémas de volumes finis hybrides, de différences finies mimétiques et de volumes finis mixtes. Le terme de convection est traité à l'aide d'une famille de méthodes qui s'appuient sur les inconnues hybrides associées aux interfaces du maillage. Cette famille contient à la fois les schémas centré et amont. Les schémas que nous étudions permettent une discrétisation localement conservative des termes d'ordre un et d'ordre deux sur des maillages arbitraires en dimensions d'espace deux et trois. Nous démontrons qu'il existe une solution unique du problème discret qui converge vers la solution du problème continu et nous présentons des résultats numériques en dimensions d'espace deux et trois, en nous appuyant sur des maillages adaptatifs.Au Chapitre 2, nous proposons un schéma de volumes finis hybrides pour la discrétisation d'un problème d'écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d'une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d'un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l'on s'appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l'existence d'une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.Le Chapitre 3 porte sur un problème d'écoulement diphasique, dans lequel la courbe de pression capillaire admet des discontinuité spatiales. Plus précisément on suppose que l'écoulement prend place dans deux régions du sol aux propriétés très différentes, et l'on suppose que la loi de pression capillaire est discontinue en espace à la frontière entre les deux régions, si bien que la saturation de l'huile et la pression globale sont discontinues à travers cette frontière avec des conditions de raccord non linéaires à l'interface. On discrétise le problème à l'aide d'un schéma, qui coïncide avec un schéma de volumes finis standard dans chacune des deux régions, et on démontre la convergence d'une solution approchée vers une solution faible du problème continu. Les test numériques présentés à la fin du chapitre montrent que le schéma permet de reproduire le phénomène de piégeage de la phase huile.
|
9 |
Numerical Analysis of a Non-Conforming Domain Decomposition for the Multigroup SPN Equations / Analyse numérique d'une méthode de décomposition de domaine non-conforme pour les équations multigroupes SPNGiret, Léandre 21 June 2018 (has links)
Dans cette thèse, nous nous intéressons à la résolution des équations SPN du transport de neutrons au sein des cœurs de réacteurs nucléaires à eau pressurisée. Ces équations forment un problème aux valeurs propres généralisé. Dans notre étude nous commençons par le problème source associé et ensuite nous étudions le problème aux valeurs propres. Un cœur de réacteur est composé de différents milieux: le combustible, le fluide caloporteur, le modérateur... à cause de ces hétérogénéités de la géométrie, le flux solution du problème source peut être peu régulier. Nous proposons l’analyse numérique de l’approximation de la solution par la méthode des éléments finis du problème source dans le cas où la solution est peu régulière. Pour le problème aux valeurs propres, dans le cas mixte, les théories déjà développées ne s’appliquent pas. Nous proposons ici une nouvelle méthode pour étudier la convergence de la méthode des éléments finis mixtes pour les problèmes aux valeurs propres. Pour les solutions peu régulières, la montée en ordre de la méthode des éléments finis n’améliore pas l’approximation du problème, il faut raffiner le maillage aux alentours des singularités de la solution. La géométrie des cœurs de réacteur se prête bien aux maillages cartésiens, mais leur raffinement augmente vite leur nombre de degrés de liberté. Pour palier à cette augmentation, nous proposons ici une méthode de décomposition de domaine qui permet d’utiliser des maillages globalement non-conformes. / In this thesis, we investigate the resolution of the SPN neutron transport equations in pressurized water nuclear reactor. These equations are a generalized eigenvalue problem. In our study, we first considerate the associated source problem and after we concentrate on the eigenvalue problem. A nuclear reactor core is composed of different media: the fuel, the coolant, the neutron moderator... Due to these heterogeneities of the geometry, the solution flux can have a low-regularity. We propose the numerical analysis of its approximation with finite element method for the low regular case. For the eigenvalue problem under its mixed form, we can not rely on the theories already developed. We propose here a new method for studying the convergence of the SPN neutron transport eigenvalue problem approximation with mixed finite element. When the solution has low-regularity, increasing the order of the method does not improve the approximation, the triangulation need to be refined near the singularities of the solution. Nuclear reactor cores are well-suited for Cartesian grids, but the refinement of these sort of triangulations increases rapidly their number of degrees of freedom. To avoid this drawback, we propose domain decomposition method which can handle globally non-conforming triangulations.
|
10 |
Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires / Finite volume methods on general meshes for nonlinear evolution systemsBrenner, Konstantin 08 November 2011 (has links)
Les travaux de cette thèse portent sur des méthodes de volumes finis sur maillages quelconque pour la discrétisation de problèmes d'évolution non linéaires modélisant le transport de contaminants en milieu poreux et les écoulements diphasiques.Au Chapitre 1, nous étudions une famille de schémas numériques pour la discrétisation d'une équation parabolique dégénérée de convection-reaction-diffusion modélisant le transport de contaminants dans un milieu poreux qui peut être hétérogène et anisotrope. La discrétisation du terme de diffusion est basée sur une famille de méthodes qui regroupe les schémas de volumes finis hybrides, de différences finies mimétiques et de volumes finis mixtes. Le terme de convection est traité à l'aide d'une famille de méthodes qui s'appuient sur les inconnues hybrides associées aux interfaces du maillage. Cette famille contient à la fois les schémas centré et amont. Les schémas que nous étudions permettent une discrétisation localement conservative des termes d'ordre un et d'ordre deux sur des maillages arbitraires en dimensions d'espace deux et trois. Nous démontrons qu'il existe une solution unique du problème discret qui converge vers la solution du problème continu et nous présentons des résultats numériques en dimensions d'espace deux et trois, en nous appuyant sur des maillages adaptatifs.Au Chapitre 2, nous proposons un schéma de volumes finis hybrides pour la discrétisation d'un problème d'écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d'une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d'un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l'on s'appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l'existence d'une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.Le Chapitre 3 porte sur un problème d'écoulement diphasique, dans lequel la courbe de pression capillaire admet des discontinuité spatiales. Plus précisément on suppose que l'écoulement prend place dans deux régions du sol aux propriétés très différentes, et l'on suppose que la loi de pression capillaire est discontinue en espace à la frontière entre les deux régions, si bien que la saturation de l'huile et la pression globale sont discontinues à travers cette frontière avec des conditions de raccord non linéaires à l'interface. On discrétise le problème à l'aide d'un schéma, qui coïncide avec un schéma de volumes finis standard dans chacune des deux régions, et on démontre la convergence d'une solution approchée vers une solution faible du problème continu. Les test numériques présentés à la fin du chapitre montrent que le schéma permet de reproduire le phénomène de piégeage de la phase huile. / In Chapter 1 we study a family of finite volume schemes for the numerical solution of degenerate parabolic convection-reaction-diffusion equations modeling contaminant transport in porous media. The discretization of possibly anisotropic and heterogeneous diffusion terms is based upon a family of numerical schemes, which include the hybrid finite volume scheme, the mimetic finite difference scheme and the mixed finite volume scheme. One discretizes the convection term by means of a family of schemes which makes use of the discrete unknowns associated to the mesh interfaces, and contains as special cases an upwind scheme and a centered scheme. The numerical schemes which we study are locally conservative and allow computations on general multi-dimensional meshes. We prove that the unique discrete solution converges to the unique weak solution of the continuous problem. We also investigate the solvability of the linearized problem obtained during Newton iterations. Finally we present a number of numerical results in space dimensions two and three using nonconforming adaptive meshes and show experimental orders of convergence for upwind and centered discretizations of the convection term.In Chapter 2 we propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that it can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case of a heterogeneous and anisotropic permeability tensor. The convective fluxes, which are non monotone with respect to the unknown saturation and discontinuous with respect to the space variables, are discretized by means of a special Godunov scheme. We prove the existence of a discrete solution which converges, along a subsequence, to a solution of the continuous problem. We present a number of numerical results in space dimension two, which confirm the efficiency of the numerical method.Chapter 3 is devoted to the study of a two-phase flow problem in the case that the capillary pressure curve is discontinuous with respect to the space variable. More precisely we assume that the porous medium is composed of two different rocks, so that the capillary pressure is discontinuous across the interface between the rocks. As a consequence the oil saturation and the global pressure are discontinuous across the interface with nonlinear transmission conditions. We discretize the problem by means of a numerical scheme which reduces to a standard finite volume scheme in each sub-domain and prove the convergence of a sequence of approximate solutions towards a weak solution of the continuous problem. The numerical tests show that the scheme can reproduce the oil trapping phenomenon.
|
Page generated in 0.1035 seconds