Les modèles linéaires généralisés sont une généralisation des modèles de régression linéaire, et sont très utilisés dans le domaine du vivant. Le modèle de régression logistique, l'un des modèles de cette classe, très souvent utilisé dans les études biomédicales demeure le modèle de régression le plus approprié quand il s'agit de modéliser une variable discrète de nature binaire. Dans cette thèse, nous nous intéressons au problème de l'inférence statistique dans le modèle de régression logistique, en présence d'individus immunes dans la population d'étude.Dans un premier temps, nous considérons le problème de l'estimation dans le modèle de régression logistique en présence d'individus immunes, qui entre dans le cadre des modèles de régression à excès de zéros (ou zéro-inflatés). Un individu est dit immune s'il n'est pas exposé à l'événement d'intérêt. Le statut d'immunité est inconnu sauf si l'événement d'intérêt a été observé. Nous développons une méthode d'estimation par maximum de vraisemblance en proposant une modélisation conjointe de l'immunité et des risques d'infection. Nous établissons d'abord l'identifiabilité du modèle proposé. Puis, nous montrons l'existence de l'estimateur du maximum de vraisemblance des paramètres de ce modèle. Nous montrons ensuite,la consistance de cet estimateur, et nous établissons sa normalité asymptotique. Enfin, nous étudions, au moyen de simulations, leur comportement sur des échantillons de taille finie.Dans un deuxième temps, nous nous intéressons à la construction de bandes de confiance simultanées pour la probabilité d'infection, dans le modèle de régression logistique avec fraction immune. Nous proposons trois méthodes de constructions de bandes de confiance pour la fonction de régression. La première méthode (méthodede Scheffé) utilise la propriété de normalité asymptotique de l'estimateur du maximum de vraisemblance, et une approximation par une loi du khi deux pour approcher le quantile nécessaire à la construction des bandes. La deuxième méthode utilise également la propriété de normalité asymptotique de l'estimateur du maximum de vraisemblance et est basée sur une égalité classique de (Landau & Sheep 1970). La troisième méthode (méthode bootstrap) repose sur des simulations, pour estimer le quantile approprié de la loi du supremum d'un processus gaussien. Enfin, nous évaluons, au moyen de simulations, leurs propriétés sur des échantillons de taille finie.Enfin, nous appliquons les résultats de modélisation à des données réelles surla dengue. Il s'agit d'une maladie vectorielle tropicale à transmission strictement inter-humaine. Les résultats montrent que les probabilités d'infection estimées à partir de notre approche de modélisation sont plus élevées que celles obtenues à partir d'un modèle de régression logistique standard qui ne tient pas compte d'une possible immunité. En particulier, les estimations fournies par notre approche suggèrent que le sous-poids constitue un facteur de risque majeur de l'infection par la dengue, indépendamment de l'âge.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00829844 |
Date | 15 November 2012 |
Creators | Diop, Aba |
Publisher | Université de La Rochelle |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0111 seconds