Return to search

Assimilation de données et recalage rapide de modèles mécaniques complexes / Data assimilation and fast model-updating of complex mechanicalmodels

Depuis plusieurs années, les évolutions considérables survenues au niveau des moyens de calcul à disposition ont entraîné de nouvelles pratiques de simulation des structures mécaniques. Parmi ces nouvelles pratiques celle qui motive ces travaux de thèse est le paradigme Dynamic Data Driven Application Systems (DDDAS). L’idée fondatrice de cette approche est de mettre en place un dialogue entre un système physique et son modèle numérique. L’objectif est alors de (i) permettre un recalage du modèle numérique à l’aide de mesures faites sur le système physique ; (ii) contrôler l’évolution du système physique à l’aide de la prédiction faite par la simulation numérique. La difficulté majeure est de réaliser ce dialogue en temps réel. Ces travaux de thèse se focalisent sur l’étape de recalage de modèle du paradigme DDDAS. La problématique est alors de développer des méthodes et outils de résolution de problèmes inverses prenant en compte diverses contraintes à savoir : (i) une robustesse vis-à-vis des données corrompues ; (ii) une généricité permettant de considérer une grande variété de problèmes et de modèles mécaniques ; (iii) un temps de calcul réduit afin de tendre vers un recalage de modèle en temps réel. Le point de départ de ces travaux est l’Erreur en Relation de Comportement modifiée, approche énergétique dédiée à la résolution des problèmes inverses en mécanique, s’étant notamment illustrée par sa grande robustesse vis-à-vis des bruits de mesure. Dans un premier temps, afin de garantir un processus d’identification rapide, nous avons couplé l’Erreur en Relation de Comportement modifiée avec la réduction de modèle PGD dans le cadre de modèle linéaire, permettant ainsi de mettre en place un processus d’identification rapide et automatique. Ensuite, dans le but d’être appliquée au paradigme DDDAS, nous avons développé une démarche d’identification reposant sur un processus d’assimilation de données (le filtre de Kalman) et utilisant l’Erreur en Relation de Comportement modifiée comme opérateur d’observation toujours dans le cadre de problèmes linéaires. Nous avons ensuite étendu cette méthode d’assimilation de données à la problématique de l’identification de champs de paramètres en introduisant une séparation des discrétisations spatiales et des outils provenant de l’adaptation de maillage. Nous avons ensuite abordé la problématique des modèles mécaniques non-linéaires, au travers de modèles d’endommagement et de visco-plasticité. Pour cela nous avons dans un premier temps reformulé et étendu le concept d’Erreur en Relation de Comportement modifiée à ce cadre non-linéaire matériau et nous avons mis en place un processus de résolution dédié, s’inspirant de la méthode LaTIn. Pour finir nous avons introduit cette reformulation de l’Erreur en Relation de Comportement modifiée au sein de la méthode d’assimilation de données développée précédemment afin de traiter le recalage dynamique de modèles non-linéaires. / For several years, the considerable changes that have occurredin computing tools have led to new practices in the simulation of mechanical structures. Among them, the motivation for this work is the Dynamic Data Driven Application Systems paradigm (DDDAS). The founding idea of this approach is to establish a dialogue between a physical system and its numericalmodel. The objective is then to (i) allow a calibration of the numerical model by means of measurements performed on the physical system; (ii) control the evolution of the physical system using theprediction given by numerical simulation. The major difficulty is to realize this dialogue in real time. This work focuses on the model updating step of the DDDAS paradigm. The problem is then to develop methods and tools to solve inverse problems taking into account various constraints, namely: (i) robustness with respect to corrupted data; (ii) genericity for considering a wide variety of problems and mechanical models; (iii) a reduced computation time in order to tend towards a real-time model updating.The starting point of this work is the modified Constitutive Relation Error, an energetic approach dedicated to the solution of inverse problems in mechanics, notably illustrated by its robustness with respect to measurement noises. First, in order to guarantee a fast identification process, we have coupled the modified Constitutive Relation Error with the PGD model reduction in the linear model framework, thus enabling a fast and automatic identification process. Then, in order to be applied to the DDDAS paradigm, we have developed an identification method based on a data assimilation process (the Kalman filter) and using the modified Constitutive Relation Error as an observer alwayswithin the framework of linear problems. We have then extended this data assimilation approach to the problem of the identification of parameter fields by introducing a separation of the spatial discretizations and by introducing tools resulting from the mesh adaptation framework. We have then addressed the problem of non-linear mechanical models, through damage and visco-plasticitymodels. To this end, we have first recast and extended the concept of the modified Constitutive Relation Error to this nonlinear material framework and we have implemented a dedicated resolution process, based on the LaTIn method. Finally, we have introduced this reformulation of the modified Constitutive Relation Error in the previously data assimilation method in order to process the model updating of nonlinear models.

Identiferoai:union.ndltd.org:theses.fr/2017SACLN053
Date29 November 2017
CreatorsMarchand, Basile
ContributorsUniversité Paris-Saclay (ComUE), Chamoin, Ludovic
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds