Les verres métalliques massifs à base de zirconium, développés depuis la fin des années 80, présentent des propriétés mécaniques très intéressantes. Ils peuvent être envisagés pour de multiples applications y compris à des températures élevées et il est donc intéressant d'étudier leur résistance à l'oxydation dans de telles conditions. L'objectif fondamental de cette étude consiste à mieux comprendre le rôle de divers paramètre thermodynamiques et chimiques sur le comportement à l'oxydation des verres métalliques à base de zirconium à des températures intermédiaires sous air sec, à déterminer les contraintes résiduelles au sein de la couche d'oxyde formée, en comparaison avec des alliages amorphe cristallisés après un traitement de recuit. La cinétique d'oxydation de ces verres et la structure cristalline de la couche d'oxyde ZrO2 dépend de la température et de la durée d'oxydation : pour des durées courtes d'oxydation et pour une température légèrement inférieure à Tg, la cinétique d'évolution est parabolique alors que si l'échantillon est oxydé à T > Tg, la loi cinétique peut être décomposée en deux parties. Les mêmes alliages cristallisés après un traitement de recuit, s'oxydent selon une loi parabolique quelque soit la température. Pour des durées d'oxydation longues à une température proche de Tg, les lois cinétiques deviennent plus complexes et la cristallisation du verre métallique pouvant avoir lieu au cours des essais d'oxydation. De même la structure cristalline des couches d'oxyde dépend de la température d'oxydation. Ainsi, pour T < Tg, la couche d'oxyde des alliages amorphes est uniquement constituée de la zircone tétragonale alors que pour ces mêmes alliages portés à une température T > Tg et pour les alliages cristallisés, on observe de la zircone monoclinique. Les mécanismes d'oxydation dépendent de la température d'oxydation. Pour les températures où les alliages restent vitreux, la formation de l'oxyde est due à la fois à la diffusion des ions d'oxygène vers l'intérieur mais également à la diffusion des ions de zirconium vers l'extérieur de la couche. En revanche, pour les alliages en cours de cristallisation, la diffusion des ions de zirconium est progressivement freinée jusqu'à devenue nulle lorsque la cristallisation est totale, l'oxydation étant alors uniquement contrôlée par la diffusion interne des ions d'oxygène.Les contraintes résiduelles correspondantes au sein de couches d'oxyde sont de compression, aussi bien pour les alliages amorphes que pour les alliages cristallisés, et qu'elles augmentent linéairement avec l'épaisseur de la couche. Les contraintes de croissance lors de l'oxydation et résiduelle après l'oxydation sont fortement influencées par le changement de phase de la zircone.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00769926 |
Date | 22 November 2011 |
Creators | Wang, Bin |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds