Return to search

In-situ XPS Investigation of the Surface Chemistry of a Cu(I) Beta-Diketonate Precursor and the ALD of Cu2O

This poster was presented in the Materials for Advanced Metallization (MAM) 2014 Conference in Chemnitz, Germany.

Abstract: Atomic Layer Deposition (ALD) has emerged as an ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)], has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. However, still many questions are unanswered regarding the underlying surface chemistry of the precursor on many substrates, leading to different growth modes during ALD.
In this work, the surface chemistry of [(nBu3P)2Cu(acac)] on SiO2 substrate is investigated by in-situ X-ray photoelectron spectroscopy (XPS), reporting vital information about the oxidation state and the atomic concentration after chemisorption on the substrates kept at different temperatures. The aim of the investigation is to understand the stepwise change in the precursor oxidation state with increasing substrate temperature and to identify the temperature limit for the thermal ALD with this Cu precursor on SiO2.
For the experiments, the Cu precursor was evaporated on SiO2 substrates kept at temperatures between 22 °C and 300 °C. The measured C/Cu and P/Cu concentration indicated that most of the nBu3P ligands were released either in the gas phase or during adsorption (Fig. 1a). No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. Similarly, in this temperature range the Auger parameter calculated from Cu 2p3/2 and Cu L3VV spectra was found to be 360.0±0.2 eV, comparable to Cu(I) oxidation state [3]. However, disproportionation of the Cu precursor was observed above 200 °C, since C/Cu concentration ratio decreased and substantial metallic Cu was present on the substrate. Hence, 145 °C is the temperature limit for the ALD of Cu2O from this precursor, as the precursor must not alter its chemical state after chemisorption on the substrate.
500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle, comparable to previous experiments.
References:
[1] T. Waechtler, S. Oswald, N. Roth, A. Jakob, H. Lang, R. Ecke, S. E. Schulz, T. Gessner, A. Moskvinova, S. Schulze, M. Hietschold, J. Electrochem. Soc., 156 (6), H453 (2009).
[2] T. Waechtler, S. -F. Ding, L. Hofmann, R. Mothes, Q. Xie, S. Oswald, C. Detavernier, S. E. Schulz, X. -P. Qu, H. Lang, T. Gessner, Microelectron. Eng., 88, 684 (2011).
[3] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. González Elipe, J. Phys. Chem. B, 106, 6921 (2002).

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:20077
Date07 July 2014
CreatorsDhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Lang, Heinrich, Gessner, Thomas
ContributorsFraunhofer ENAS
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:lecture, info:eu-repo/semantics/lecture, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds