Because of the changing energy supply landscape, with the transition towards renewable energy, an emerging demand for energy storage systems (ESS) is expected in the near future. Battery energy storage is promising to contribute to mitigate the greenhouse gas emissions, but face issues considering resource use (IEA, 2023; IRENA, 2022). Sodium-ion batteries are a promising technology for the ESS-market, expected to take up 21 % of new installations by 2030. This means an anticipated demand of about 50 GWh of sodium-ion cells required in 2030. Key drivers for the expected entrance of sodium-ion storage are the low price, high abundance of cell materials and expectations of a more safe and sustainable battery. Lithium-ion technology is currently dominating the energy storage market, but have concerns with ethical resource supply and rising mineral prices combined with the growing demand. (BloombergNEF, 2023; IEA, 2023) There is a scarcity of information considering sodium-ion environmental reporting (Liu et al., 2021; Peters et al., 2021). Therefore, the purpose of this study is to evaluate the environmental aspect of sodium-ion storage technology. Thereby, with this study a life cycle assessment (LCA) is performed on a specific sodium-ion cell. The specific scope for the thesis is to look at 1 kWh of produced battery energy storage, in a cradle-to-gate perspective. The results are to be presented with a decomposition of the emissions across the value chain including materials, transport, and energy influence. As well a division of the cell materials impacts are demonstrated. For the assessed cell, it is assumed to be intended for a giga scale production (>1 GWh annual cell storage produced). Hypothetically this is to be placed in Europe, with both a global and a local supply chain presented. In order with European initiatives, there is a guideline called PEFCR, that recommends how to access the environmental footprint of different products. Among these guidelines, there is a certain standard for battery environmental assessment, which was pursued to be followed. According to these recommendations, the methodology of this assessment will include 16 environmental perspectives, called EF2.0. The EF2.0 emission categories presented as main result are Climate Change (total), Acidification, Resource Use (fossils), Resource Use (minerals & metals), and Particulate Matter, since these are considered relevant for batteries by PEFCR. (European Commission and ReCharge, 2018) Furthermore, it was chosen for this study to have its core in analysing the EF2.0 Climate Change impact, with the aim to identify measures on how to reduce the carbon footprint caused by the cell’s life cycle. With the perspective of the 16 environmental effects, a sodium-ion current state scenario was put in focus. On top of this, a decarbonized scenario is presented for the EF2.0 Climate Change impact. For the current state scenario, a comparison is made with a lithium-ion cell from industry, produced from fossil-free energy. This is framing the sodium-ion environmental results in the perspective of how a decarbonized lithium-ion cell performs environmentally. Both the sodium and lithium cells included in the comparison, have the aim to be used for energy storage system applications (ESS). Regarding the results for the 16 environmental categories, overall, the cathode is the main driver for emissions, followed by electrolyte and anode. Furthermore, in the decarbonized scenario, it is illustrated that implementing certain measures within the value chain could reduce the sodium-cell carbon emissions with potentially more than half of what is estimated today. Altogether, the sodium-ion value chain is in an emerging expansion phase (Rho motion, 2023), with a young supply chain starting to form. It is discussed that in the near future, with higher energy density on sodium cells commercialized (Peters et al., 2021), the environmental footprint for sodium-ion could significantly improve. Anyhow, the strongest indication from this study, is that the resource use from minerals and metals drastically would reduce with a technology switch from lithium to sodium. Among the 16 environmental impacts as a whole, the main trend is that sodium-ion cells induce less harm on the environment compared to lithium technologies. Certainly, in the future sodium-ion cells could be a low cost and sustainable option available for energy storage systems. / I och med dagens förändrade energiförsörjningslandskap, med en pågående trend mot mer förnybar energi, förväntas en ökad efterfrågan på storskaliga energilagringssystem (ESS) inom en snar framtid. Däribland är batterilagring lovande för att bidra till att minska utsläppen av växthusgaser, men försörjningen av batterier står samtidigt inför utmaningar vad gäller resursutarmning (IEA, 2023; IRENA, 2022). Natriumjonbatterier är en lovande teknik för ESS-marknaden, som förväntas uppta 21 % av försäljningsmarknaden till 2030. Vilket skulle motsvara en efterfrågan på cirka 50 GWh natriumjonceller till 2030. De viktigaste drivkrafterna för en förmodad ökning av natriumbatterilagring är låga kostnader, överflödig tillgång på cellmaterial och förväntningar om att det ska vara ett säkrare och mer hållbart batteri. Litiumbatterier dominerar för närvarande energilagringsmarknaden, men har problem med etisk resursförsörjning och stigande mineralpriser, samtidigt som det finns en växande efterfrågan av energilagring. (BloombergNEF, 2023; IEA, 2023) Eftersom det finns sparsamt med information kring miljökonsekvenser av natriumbatteriproduktion (Liu et al., 2021; Peters et al., 2021) är syftet med den här studien att utvärdera miljöavtrycket av natriumjonbatterilagring. I studien utförs därför en livscykelanalys (LCA) på en bestämd natriumjoncell. Mer specifikt omfattar det att analysera det ekologiska avtrycket av 1 kWh producerad batterikapacitet, i ett cradle-to-gate-perspektiv. Resultaten presenteras dels som en fördelning av utsläppen över hela värdekedjan, inklusive material, transport och produktionspåverkan. Därtill visas en differentiering av cellmaterialets miljöpåverkan. Det berörda batteriet antas vara tillverkad i en giga scale produktion (>1 GWh årlig celltillverkning). Hypotetiskt antas tillverkningen placeras i Europa, men både en global och en lokal leveranskedja bedöms. I enlighet med europeiska initiativ finns det riktlinjer kallade PEFCR, som rekommenderar hur bedömningar av produkters miljöavtryck bör utföras. Det finns en specifik standard för miljöbedömning av batterier, vilken har eftersträvats i den här studien. I enlighet med rekommendationerna, innefattar den här studiens metod att utvärdera 16 miljöperspektiv, kallade EF2.0. De utsläppskategorier (EF2.0) som presenteras som huvudresultat är Climate Change (total), Acidification, Resource Use (fossils), Resource Use (minerals & metals), och Particulate Matter, eftersom dessa enligt PEFCR anses vara relevanta för just batterier. (European Commission and ReCharge, 2018) Det bör understrykas att den här studie har sitt huvudfokus på att analysera EF2.0 Climate Change (total), med målet att identifiera åtgärder för hur koldioxidavtrycket orsakat av batteriets livscykel kan minskas. För de 16 miljökategorierna, har ett natriumbatteris nuvarande läge ”current state scenario” satts i fokus. Utöver det presenteras ett ”decarbonized scenario” för EF2.0 Climate Change (total). För ”current state”-scenariot görs en jämförelse med ett litiumbatteri från industrin, vilket produceras med fossilfri energi. Därmed skapas förståelse för hur natriumbatteriets miljöpåverkan skiljer sig från det lågfossilintensiva litiumjoncellen. Både natrium- och litiumcellerna som ingår i jämförelsen har som avsikt att användas för energilagringssystem (ESS). Gällande resultatet av de 16 miljökategorierna är det tydligt att katoden är den främsta källan för utsläpp, följt av elektrolyten och anoden. I ”decarbonized scenario” illustreras därtill att om vissa specifika åtgärder implementeras i värdekedjan, skulle det kunna minska natriumbatteriers koldioxidutsläpp med potentiellt mer än hälften av vad som uppskattats idag. I nuläget pågår en utveckling och expansion av leveranskedjan för natriumbatteriproduktion (Rho motion, 2023), med en materialproduktion som börjar ta form. Samtidigt kan det i en snart framtid förväntas levereras natriumbatterier med högre energidensitet (Peters et al., 2021) och då skulle miljöpåverkan från natriumceller kunna sjunka avsevärt. Det centrala medskicket från den här studien är att resursanvändningen av mineraler och metaller drastiskt skulle minska i och med ett teknikskifte från litium- till natriumbatterier. Med de 16 miljöperspektiven i åtanke, är det övergripande resultatet att natriumceller orsakar mindre miljöskada jämfört med litiumteknik. Högst troligt, kan natriumceller i framtiden vara ett billigt och hållbart alternativ för energilagringssystem.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-334636 |
Date | January 2023 |
Creators | Nibelius, Rebecca |
Publisher | KTH, Skolan för industriell teknik och management (ITM) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2023:464 |
Page generated in 0.0064 seconds