Return to search

Effects of nano-clay on the structure and properties of thermotropic liquid crystal polymer an its blends with poly (ethylene terephthalate)

La première partie de cette thèse présente la préparation et la caractérisation des nanocomposites (LCPCNs) composés d'une matrice de polymère à cristaux liquides thermotropique (LCP, Vectra B950) contenant des nanoparticules de montmorillonite (argile) organiquement modifiée (OMMT). Des LCPCNs contenant deux concentrations de nanoparticules OMMT (1.3 et 2% massiques) ont été préparés par le procédé d'extrusion. Différentes techniques de caractérisation, telles que la diffraction des rayons X (XRD), la microscopie électronique à transmission (TEM), la calorimétrie différentielle (DSC), l'analyse thermogravimétrique (TGA) et l'analyse mécanique-dynamique (DMA) ont été utilisées pour caractériser la matrice LCP et les nanocomposites LCPCNs développés. Les patrons XRD ainsi que les observations microscopiques TEM ont montré 1'intercalation des nanoparticules OMMT au sein de la matrice LCP et ce pour les deux compositions en OMMT. Aussi, les patrons XRD(2D) ont montré qu'un certain ordre très peu smectique était présent dans le polymère LCP. Cependant, dans le cas de LCPCNs, les chaînes LCP tendaient à s'orienter dans la direction des lamelles d'OMMT dispersées. Les balayages DSC ont montré que, durant le premier chauffage, le premier de pic fusion représente la transition de la phase cristalline à nématique et, après cela, une isotropisation a eu lieu. Les analyses TGA ont montré deux différents types de comportements de dégradation des échantillons LCP et LCPCN dans les environnements inertes et oxydants. Les résultats de DMA ont montré une amélioration des modules élastiques, de stockage et de perte des LCPCNs avec l'augmentation de la concentration en OMMT. La seconde partie de la thèse présente les propriétés rhéologiques à l'état fondu de la matrice LCP et des nanocomposites LCPCNs à la fois dans les zones viscoélastiques linéaires et non linéaires (en modes oscillatoires et rotationnels). Cette caractérisation rhéologique a montré que les LCPCNs les plus chargés en OMMT présentent des structures partiellement réticulées presque sans défauts comparativement aux LCPCNs les moins chargés en OMMT et aussi les LCP purs. Les mesures de relaxation des contraintes (domaine linéaire) ont révélé que, après l'imposition d'une déformation constante pendant une période spécifique, le LCP pur relaxe plus rapidement que les LCPCNs. Lors de l'essai de relaxation, il a été observé qu'un taux de cisaillement élevé modifie très rapidement les défauts dans le LCP pur et probablement atteint presque une position d'équilibre, tandis que les LCPCNs ont montré un fort comportement rhéofluidifiant. Afin de mieux comprendre les propriétés rhéologiques inhabituelles des LCPCNs à l'état fondu, les variations de la dispersion des nanoparticules OMMT dans la matrice LCP ainsi que le changement de la croissance des cristaux du LCP ont été largement étudiés par la technique de diffusion des rayons X aux petits et grands angles. La technique Généralisée de la Transformation de Fourier développée par Glatter a été utilisée pour caractériser l'état de dispersion des nanoparticules OMMT en fonction de la température. Il s'agit d'une nouvelle approche que nous avons récemment proposée pour une analyse quantitative de la dispersion plutôt qu'une analyse qualitative. La troisième partie de la thèse est dédiée à la préparation de nanocomposites à base de poly(éthylène terephthalate) (PET) ainsi qu'à la caractérisation de la croissance des cristaux dans le PET pur et les nanocomposites préparés. Deux nanocomposites à base de PET (PETCNs) avec des concentrations en poids de OMMT égales à 1.3 et 2% ont été préparés par extrusion. Les patrons de diffraction des rayons X ainsi que les images TEM ont révélé la formation de nanocomposites avec des nanoparticules OMMT intercalées. Les comportements de fusion et de cristallisation du PET pur et des PETCNs ont été étudiés en utilisant les techniques de DSC classique et DSC à température modulée (TMDSC). Les résultats de DSC sur des échantillons moulés par compression ont montré des fusions successives avec un pic endothermique, accompagné d'un épaulement pour les PETCNs. Les résultats de DSC et de TMDSC pour les échantillons trempés ont montré que la fusion suivie d'une cristallisation froide. Pour tous les échantillons, les résultats de TMDSC ont également confirmé que la fusion est associée au phénomène de recristallisation. Les résultats de la caractérisation DMA ont montré que les PETCNs ont subi une amélioration considérable du module dans la gamme de températures étudiées. Cependant, l'effet de la variation de la concentration en nanoparticules OMMT est minime. Afin de mieux connaître la cinétique de croissance cristalline (non isotherme) du PET pur et du PETCNs, les modèles D'Avrami, d'Ozawa et d'Avrami-Ozawa ont été utilisés. Différents paramètres cinétiques déterminés à partir de ces modèles ont démontré que les nanoparticules OMMT intercalées étaient efficaces pour démarrer plus tôt la cristallisation par nucléation. Cependant, la croissance des cristaux était moins rapide en raison de l'intercalation de chaînes de polymères entre les lamelles OMMT. Les observations de la microscopie optique en lumière polarisée appuient aussi les résultats de la DSC. Les énergies d'activation pour la cristallisation estimées par les trois modèles (Augis-Bennett, Kissinger et Takhor) ont montré la tendance suivante PETCN2 < PETCN1.3 < PET. L'effet de l'incorporation de nanoparticlues OMMT sur les propriétés thermiques des mélanges de PET/LCP est décrit dans la quatrième partie de cette thèse. Des mélanges PET/LCP (80/20) et des nanocomposites à base de ces mélanges ont été préparés par extrusion bi-vis. Les analyses morphologiques des mélanges PET/LCP ont montré que l'ajout de nanoparticules OMMT favorise une structure à phases séparées du mélange PET/LCP. Une étude détaillée sur les propriétés thermiques du mélange PET/LCP et du nanocomposite PET/LCP/OMMT a été réalisée à l'aide des techniques DSC et TMDSC. Les résultats ont montré un comportement de fusion complexe comportant une succession de fusion et de recristallisation. Enfin, la cinétique de croissance des cristaux (non-isotherme) dans les mélanges PET/LCP et les nanocomposites PET/LCP/OMMT a aussi été caractérisée à l'aide de divers modèles tels que ceux d'Avrami, Ozawa et Avrami-Ozawa. La dernière partie de cette thèse présente les résultats des travaux sur la relation structure-propriétés des mélanges PET/LCP (80/20) développés par extrusion et des nanocomposites PET/LCP/OMMT (1.3 et 2.8% massiques de OMMT) en fonction de la fréquence d'oscillation et de la température. Les expériences de balayage en fréquence sous déformation constante et à différentes températures ont été réalisées à l'état solide à l'aide de la technique DMA. Celles de balayage en température des mélanges PET/LCP purs et des nanocomposites PET/LCP/OMMT ont été effectuées dans le but de déterminer la variation des modules de flexion, de stockage et de perte ainsi que les valeurs tanS correspondantes en fonction de la température. Afin de mieux comprendre les modifications de stmcture des nanoparticules OMMT dispersées dans la matrice PET/LCP, le degré d'anisotropie ainsi que les valeurs moyennes de l'orientation des lamelles OMMT ont été caractérisés à l'aide de la technique de diffusion de la lumière aux petits angles, avant et après les caractérisations sous balayage en fréquence and en température.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/22718
Date18 April 2018
CreatorsBandyopadhyay, Jayita
ContributorsKaliaguine, S.
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Formatxxxv, 275 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0032 seconds