Sejam f:(C^2,0) to (C^3,0) um germe de aplicação holomorfa de coposto 1 e f_t uma perturbação estável de f. Os pontos singulares de f_t são cross-caps, pontos duplos ou pontos triplos. O número de cross-caps e pontos triplos de f_t e o número de Milnor da curva de pontos duplos de f_t são invariantes do germe f. Neste trabalho estudamos fórmulas para obter estes invariantes e no caso dos germes quasi-homogêneos relacionamos estes invariantes com a A_e-codimensão de f. / Let f:(C^2,0) to (C^3,0) be a holomorphic map-germ with corank 1 and f_t a stable perturbation of f. The singular points of f_t are either cross-caps, double points or triple points. The number of cross-caps and the number of triple points of f_t and the Milnor number of the double points curve of f_t are invariants of the germs f. In this work we study formulas to get these invariants and in the case of quasi-homogeneous germs we relate these invariants with the A_e-codimension of f.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04072005-122826 |
Date | 03 March 2005 |
Creators | Luchesi, Vanda Maria |
Contributors | Atique, Roberta Godoi Wik |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds