Le travail porte sur la synthèse et la cryptanalyse des schémas de chiffrement basés sur le chaos. Ces schémas utilisent, côté émetteur, des systèmes dynamiques non linéaires exhibant un comportement chaotique. La séquence complexe ainsi produite est utilisée pour masquer une information. Plusieurs modes de chiffrement sont étudiés : la modulation chaotique, la modulation paramétrique et le chiffrement par inclusion, principalement dans le cas des systèmes chaotiques à temps discret. Pour ces schémas, la reconstruction de l'information nécessite la synchronisation de l'émetteur et du récepteur. Un observateur joue le rôle du récepteur.<br /><br />Tout d'abord, le lien entre le chiffrement par le chaos et le chiffrement usuel est établi. <br /><br />Concernant la modulation chaotique, nous proposons, pour le déchiffrement, une méthode systématique de synthèse d'observateur polytopique, tenant compte de la spécificité du problème liée au chaos. Dans la modulation paramétrique, côté émetteur, l'information claire module les paramètres d'un système chaotique. Pour réaliser la synchronisation, un observateur adaptatif polytopique assurant la reconstruction simultanée état/paramètre est proposé.<br /><br />Enfin, la cryptanalyse du chiffrement par inclusion est effectuée. Nous considérons des systèmes présentant uniquement des non linéarités polynomiales qui englobent un grand nombre de systèmes chaotiques usuels. La sécurité de ce schéma repose sur les paramètres du système chaotique, supposés jouer le rôle de clé secrète. Un formalisme général, basé sur le concept de l'identifiabilité, est élaboré pour tester la reconstructibilité de ces paramètres. Les différentes définitions de l'identifiabilité sont récapitulées et des approches permettant de tester l'identifiabilité sont présentées. Ce formalisme est appliqué sur des schémas usuels de chiffrement par inclusion afin de tester leur sécurité.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00101280 |
Date | 12 July 2006 |
Creators | Anstett, Floriane |
Publisher | Université Henri Poincaré - Nancy I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds