Ce travail de recherche que nous avons développé dans ce mémoire porte sur une contribution d'approximation de problème d'identification et décomposition de domaine pour les équations d'élasticité. Le premier axe présente un algorithme alternatif pour résoudre un problème inverse d'identification de données en élasticité linéaire. Une procédure de relaxation est développée afin d'assurer et d'accélerer la convergence de l'algorithme et deux critères de sélection pour le paramètre de relaxations sont discutés. La méthode des éléments frontière est utilisée pour approcher le problème et de mettre en oeuvre numériquement l'algorithme de reconstruction de données. Nous discutons la résolution des systèmes linéaires obtenus en utilisant des méthodfes itératives de type Krylov, nous avons présenté des résultats de la convergence et la stabilité lorsque les données sont perturbées par un bruit. Dans ce deuxième travail, nous nous intéressons à l'application de la méthode de décomposition en sous-domaines à un problème d'élasticité linéaire. L'approximation se fait par les équations intégrales et les éléments de frontières. Nous décrivons les systèmes algébriques issus des méthodes de décomposition avec recouvrement et sans recouvrement. Nous présentons ensuite deux algorithmes. Les résultats numériques illustrent la convergence de ces deux algorithmes vers la solution du problème d'élasticité linéaire dans différents domaines. Enfin, une méthode de décomposition de domaine sans recouvrement pour les équations d'élasticité basée sur une formulation en contrôle optimal est présenté. L'existence d'une solution est démontrée et la convergence d'une suite des solutions approchées à la solution du problème continu est démontrée. Nous avons présenté aussi un algorithme d'optimisation et les résultats numériques démontrent l'efficacité de notre algorithme et confirment le résultat de convergence.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00276848 |
Date | 15 March 2008 |
Creators | Ellabib, Abdellatif |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0017 seconds