Dans cette thèse, on étudie deux modèles décrivant l'évolution d'un bassin sédimentaire sous une contrainte sur le taux d'érosion. Ces modèles sont obtenus par l'application de la loi de conservation de masse sur le flux de matières, ce qui conduit à l'équation de Darcy ou à l'équation de Darcy-Barenblatt selon l'expression du flux choisie parmi deux expressions possibles d'après les géologues. L'équation de Darcy-Barenblatt est obtenue de celle de Darcy en ajoutant un terme de diffusion. En outre, la contrainte d'érosion maximale est implicitement contenue dans la formulation du modèle de Darcy-Barenblatt mais pas dans celle de Darcy en dimension 2. Après la présentation de ces modèles dans l'introduction de la thèse, la première partie est consacrée au modèle de Darcy-Barenblatt. On a obtenu un résultat d'existence d'une solution par une méthode de point fixe de Schauder-Tikhonov. Ensuite, on a montré un résultat de régularité en utilisant des résultats de Meyers et de Necas sur les équations elliptiques à coefficients höldériens, ce résultat de régularité est propre à une dimension inférieur ou égale à 2. La première partie se termine par la démonstration d'un résultat d'unicité de la solution. Le modèle de Darcy est étudié dans la deuxième partie de la thèse, on a obtenu une solution du problème discrétisé en temps, mais en dimension 2 d'espace le passage à la formulation continue fait apparaitre des produits de deux convergences faibles et soulève des difficultés théoriques non surmontées. En dimension 1, on a obtenu une solution continue pour le cas de la sédimentation marine en résolvant un problème à frontière libre de type Bernoulli d'évolution.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00437343 |
Date | 15 October 2009 |
Creators | Louly, Mohamed-Salem |
Publisher | Université de Pau et des Pays de l'Adour |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds