La détection et quantification d’agent biologique occupe une place prépondérante dans la prévention et la détection des dangers possibles pour la santé publique (épidémie ou pandémie), l’environnement ainsi que d’autres risques contextuelles (bioterrorisme, armes biologique ou chimiques…etc.). Par conséquent, le développement d’un système portable et à moindre coût permettant de détecter ces dangers constitue l’axe de recherche pluridisciplinaire de la collaboration entre différents laboratoires de l’UPMC (Paris 6) et « RWTH university » à Aachen en Allemagne. Dans ce projet, nous avons étudié les aspects pluridisciplinaires d’un microsystème (LoC) électromagnétique de détection immunologique basé sur l’utilisation de nanoparticules magnétiques (MNP). En raison de leur extractabilité et de leur triabilité, les MNP sont adaptées à l'examen d'échantillons biologiques, servant de marqueurs pour des réactions biochimiques. La plupart des techniques classiques de détection existantes sont basées sur des méthodes colorimétrique, fluorescence ou électrochimique qui souffrent en majorité de problème de temps d’analyse et de sensibilité. A cet égard, Les méthodes d’immuno-détection magnétiques constituent une alternative prometteuse. Cette détection est effectuée à l’aide des MNP qui sont spécifiquement bio-fonctionnalisés en surface afin d’être liée à la cible (virus, anticorps…etc). La nouvelle méthode magnétique de mélange de fréquence permet la détection et la quantification de ces MNP avec une grande dynamique. Dans cette thèse, l’effort est dirigé vers la miniaturisation de ce système. Pour ce faire, nous avons développé un ensemble d’outils analytiques et de simulations multiphysiques afin d’optimiser les dimensions des parties électromagnétique (bobines planaires) et microfluidiques. Par la suite, des prototypes de cette structure de détection à partir de bobines en circuits imprimés et de réservoirs microfluidiques en PDMS sont dimensionnés et réalisés. Les performances de ces prototypes ont été évaluées en termes de limite de détection de MNP, linéarité et plage dynamique. En outre, ces prototypes ont permis de valider les outils de dimensionnement réalisés. Une limite de détection de nanoparticules magnétiques de 15ng/mL a été mesurée avec un volume d'échantillon de 14 μL correspondant à une goutte de sang. Finalement, la validation du système quant à l’immuno-détection est abordée avec un état de l’art et le développement d’une procédure de fonctionnalisation biochimique de surface ainsi que des premiers tests pour sa validation. / The detection and quantification of a biological agent or entity has become paramount to anticipate a possible health threat (epidemic or pandemic), environmental threat or to combat other contextual threats (bioterrorism, chemical and biological weapons, drugs). Consequently, developing a portable cost effective device that could detect and quantify such threats is the research focus of the joint multidisciplinary project between UPMC (Paris 6) laboratories and RWTH university in Aachen, Germany. In the framework of this project, we have studied the multidisciplinary aspects of an electromagnetic microsystem for immunologic detection based on magnetic nanoparticles (MNP) in a microfluidic lab-on-chip (LoC). Because of their extractability and sortability, magnetic nanoparticles are adapted for examination of biological samples, serving as markers for biochemical reactions. So far, the final detection step is mostly achieved by well-known immunochemical or fluorescence-based techniques which are time consuming and have limited sensitivity. Therefore, magnetic immunoassays detecting the analyte by means of magnetic markers constitute a promising alternative. MNP covered with biocompatible surface coating can be specifically bound to analytes, cells, viruses or bacteria. They can also be used for separation and concentration enhancement. The novel frequency mixing magnetic detection method allows quantifying magnetic nanoparticles with a very large dynamic measurement range. In this thesis, emphasis is put on the miniaturized implementation of this detection scheme. Following the development of analytical and multiphysics simulations tools for optimization of both excitation frequencies and detection planar coils, first multilayered printed circuit board prototypes integrating all three different coils along with an adapted microfluidic chip has been designed and realized. These prototypes have been tested and characterized with respect to their performance for limit of detection (LOD) of MNP, linear response and validation of theoretical concepts. Using the frequency mixing magnetic detection technique, a LOD of 15ng/mL for 20 nm core sized MNP has been achieved with a sample volume of 14 μL corresponding to a drop of blood. Preliminary works for biosensing have also been achieved with a state of the art of surface functionalization and a developed proposed biochemical immobilization procedure and preliminary tests of its validation.
Identifer | oai:union.ndltd.org:theses.fr/2018SORUS129 |
Date | 30 January 2018 |
Creators | Rabehi, Amine |
Contributors | Sorbonne université, Rheinisch-westfälische technische Hochschule (Aix-la-Chapelle, Allemagne), Kokabi, Hamid, Krause, Hans-Joachim |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0033 seconds