Return to search

Fabrication of Carbon Nanotube Thin Films by Evaporation-Induced Self-Assembly / Herstellung dünner Kohlenstoffnanorohr-Filme mittels verdunstungsinduzierter Selbstanordnung

In summary, we have prepared single-wall carbon nanotube (SWNT) thin films by the method of evaporation-induced self-assembly (EISA). Using the scalable two-plate or lens setups, sorts of different film types or patterns of SWNTs has been successfully fabricated directly from the evaporation of solvents and could be precisely controlled by the concentrations of SWNT in ambient conditions. The special geometry of meniscus as the capillary bridge has not only given rise to a much higher efficiency of fabrication than what previously reported but also allowed us to monitor the pinning and depinning process carefully and further investigate the mechanism underlying the formation of different film morphologies.

In contrast with the conventional "stick-slip" model, we have provided the new dynamical pinning and zipping model for the contact line (CL) behavior. By analyzing the motion of CL and varying deposited patterns, the traditionally so-called "stick" state should be treated as a dynamical pinning process due to the interfacial tension contrast between SWNT-covered and bare silicon surface. Besides, the plausible one-step "slip" motion could be dominated by the zipping-like kink propagation.
In addition, the experiments with heated substrates at higher temperatures between 30°C and 50 °C have shown that the striped pattern could be fabricated by both much lower SWNT and SDS concentrations than that in room temperature, which is consistent with our model of interfacial tension contrast. In this situation, the deposition rate was increased but the quality of SWNT alignment was undermined because the corresponding moving velocity of SWNT was also too fast for SWNTs to rotate when the evaporative rate was high.
The similar results were identified by the SWNT/polymer conjugates dispersed in chloroform under the similar setups and other identical conditions. The typical breathing motion of dynamical pinning and zipping-like propagation for depinning were confirmed by the new suspensions despite that some morphological parameters changed dramatically compared with that from the aqueous solution. For example, the spacing between stripes reached 100 µm ~ 200 µm because the large contact angle contrast between HDMS- and SWNT-covered surface accompanies with the high evaporation rate of chloroform in the pinning and depinning process. Likewise the average CL velocity for fabrication reached around 20 µm/s due to the much higher evaporation rate of chloroform than water.

Using alike suspensions, the modified EISA method called dose-controlled floating evaporative self-assembly (DFES) was employed to implement the self-assembly of SWNTs on the water/air interface and then deposit them on solid substrate by directed floating. Although the stripes were fabricated successfully by drops with certain doses and SWNT concentrations, there inevitably existed randomly oriented SWNTs from the water surface that built networks between the stripes containing well-aligned tubes. In order to slow down the evaporation rate and monitor the process detailedly, we used chlorobenzene as the solvent instead of chloroform and find the typical pinning/depinning movement of the CL. A preliminary analysis of the results in terms of chlorobenzene implied that the CL possibly followed the similar pinning/depinning process in consistence with our model with capillary bridge.
In the last part of the thesis, the primary research on the optical properties of these stripes of ultrahigh purity semiconducting nanotubes was conducted by fluorescence microscopy and photoluminescence excitation (PLE) spectroscopy. The energy transfer of the photogenerated excitons was confirmed between different tube species with controlled band gaps.

In short, the experiments performed in this thesis allowed to gain new insights about the fabrication of large-area SWNT thin films by the cost-effective solution-processed method and most importantly to uncover its intrinsic mechanism as well. Combined with the separation and selection technique like density gradient centrifugation or polyfluorene derivatives assisted method, highly monodisperse semiconducting nanotubes could be deposited into organized, controllable and functional arrays.
Beyond the ambient conditions, precise control for the evaporation under preset temperature and vapor pressure could possibly extend the technique to the industry level. Assisted by some other mature techniques such as roll-to-roll printing, the cost-effective method could be widely used in the manufacture of various thin film devices. More complex 2D or even 3D structures could be designed and accomplished by the method for the functional or stretchable requirements. Further research on the fundamental exciton transition and diffusion in different networks or structures of SWNTs will be the significant precondition for the real applications.

Looking ahead, from the individual carbon nanotube to its thin film, this promising material with outstanding properties had many challenges to overcome before the real-world applications. Thanks to the availability of pure and well-defined materials, the scalable solution-processed approaches for fabrication of thin films should be able to unlock the potential of carbon nanotubes and exploit them in (opto-)electronic devices in the foreseeing future. / Im Rahmen der vorliegenden Arbeit wurden über die Methode der Verdunstungsinduzierten Selbstanordnung (evaporation-induced self-assembly, EISA) dünne Filme aus einwandigen Kohlenstoffnanoröhren (SWNTs) hergestellt. Die Verwendung eines individuell anpassbaren Zwei-Platten- oder Linsen-Aufbaus ermöglichte durch präzise Kontrolle der Konzentrationen der verwendeten SWNT-Suspensionen und der unterschiedlichen Reaktionsbedingungen die Herstellung verschiedenster Arten und Anordnungen von SWNT-Dünnfilmen. Durch Ausnützen der speziellen Geometrie des Meniskus einer Kapillarbrücke zwischen zwei Oberflächen konnte nicht nur eine effizientere Herstellung im Vergleich zu früheren Veröffentlichungen erzielt werden, sondern es konnte auch der Mechanismus der Selbstanordnung (Pinning und Depinning) in Abhängigkeit der Reaktionsbedingungen und die resultierende Dünnfilmmorphologie untersucht werden.

Es konnte gezeigt werden, dass im Gegensatz zum gängigen "stick-slip" Modell durch ein dynamisches Reißverschluss-Modell (dynamical pinning and zipping model) das Verhalten an der Kontaktlinie (contact line, CL) besser beschrieben werden kann. Eine Analyse der CL-Bewegung unter unterschiedlichen Abscheidungsbedingungen führte zu dem Schluss, dass der bisher verwendete "Stick"-Zustand als dynamischer Pinning-Zustand betrachtet werden sollte, dessen Zustandekommen auf der unterschiedlichen Oberflächenspannung zwischen SWNT-bedeckten und -freien Bereichen auf der Abscheidungsoberfläche beruht. Beim bisher als einschrittige "Slip"-Bewegung beschriebenen Fortschreiten der CL ist dagegen eine Reißverschluss-ähnliche Knick-Bewegung vorherrschend.

Weiterführende temperaturabhängige Abscheidungsstudien zur Dünnfilmpräparation konnten zeigen, dass Dünnfilme in Streifenanordnung bei wesentlich geringeren SWNT- und Seifenkonzentrationen im Vergleich zu Raumtemperatur hergestellt werden können. Auch diese Prozesse konnten durch das oben beschriebene Oberflächenspannungskontrastmodell erklärt werden. Die Abscheidungsrate nimmt mit höherer Temperatur zu, wobei die Ordnung der abgeschiedenen SWNTs im Dünnfilm abnimmt, da die Bewegungsgeschwindigkeit hin zur CL im Vergleich zur Rotationsgeschwindigkeit stark zunimmt.

Auch für SWNT/Polymer Suspensionen in organischen Lösungsmitteln konnte das Verhalten der CL nach dem dynamischen Reißverschluss-Modell erklärt werden und gestreifte Dünnfilme hergestellt werden. Die Filmmorphologie und der Streifenabstand unterschieden sich jedoch maßgeblich von denen aus wässrigen SWNT Suspensionen hergestellten Dünnfilmen. Hierfür ist auch die mit 20 µm/s sehr hohe Herstellungsgeschwindigkeit verantwortlich.

Unter Verwendung der organischen SWNT Suspensionen wurden auch Experimente zu einer von EISA entlehnten Abscheidungsmethode (dose-controlled floating evaporative self-assembly, DFES) durchgeführt. Hierbei wurden gestreifte SWNT Dünnfilme durch SWNT-Selbstanordnung schwimmend an der Flüssig/Luft-Grenzfläche und anschließender Abscheidung auf festem Substrat hergestellt. Auch hier konnte ein CL-verhalten, welches dem dynamischen Reißverschluss-Modell folgt nachgewiesen werden. Detailliertere Betrachtung des Zwischenstreifenraumes zeigte jedoch willkürlich angeordnete SWNTs unabhängig der Herstellungsparameter.


Im letzten Teil der Dissertation wurden mittels Fluoreszenz-Anregungs-Spektroskopie und Fluoreszenzmikroskopie die optischen Eigenschaften der Streifen-Dünnfilme, bestehend aus hochaufgereinigten halbleitenden SWNTs untersucht. Bei Streifenmustern aus unterschiedlichen SWNT Spezies konnte ein Energietransfer der exzitonischen angeregten Zustände zwischen SWNTs mit unterschiedlicher Bandlücke nachgewiesen werden.

Zusammengefasst lässt sich sagen, dass die im Rahmen dieser Dissertation durchgeführten Experimente ein tieferes Verständnis der Herstellung großflächiger SWNT Dünnfilme durch Entdeckung des zugrundeliegenden Mechanismus ermöglichten. In Kombination mit Auftrennungsverfahren wie Dichtegradientenultrazentrifugation oder Polymer-basierten Ansätzen können so monodisperse, halbleitende SWNTs kontrolliert zu geordneten, funktionellen Arrays angeordnet werden.

Präzise Kontrolle der Umgebungsbedingungen, wie Temperatur oder Druck, könnten die Technik auch für industrielle Anwendung interessant machen. Unterstützt durch etablierte Methoden wie dem Rollendruck könnte die kostengünstige Methode großflächig zur Herstellung von verschiedenen Dünnfilmen zur Anwendung kommen. Komplexere, funktionelle, dehnbare 2D oder 3D Strukturen könnten so entworfen werden. Weitere Untersuchungen hinsichtlich der exzitonischen Übergänge und Exzitondiffusion in solchen SWNT-Netzwerken oder -Strukturen wären die Grundvoraussetzung für tatsächliche Anwendungsmöglichkeiten.

Vorausschauend lässt sich sagen, dass auf dem Weg von der individuellen Nanoröhre hin zu SWNT Dünnfilmen noch zahlreiche Herausforderungen bestehen, bevor eine reale Anwendung dieser vielversprechenden Materialien möglich erscheint. Durch hochreines und wohldefiniertes Ausgangsmaterial könnte die frei skalierbare Herstellung von SWNT Dünnfilmen über die hier beschriebenen Methoden aber eine Anwendungsmöglichkeit für das lange prognostizierte Potential der Kohlenstoffnanoröhren in (opto-)elektronischen Vorrichtungen in näherer Zukunft ermöglichen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12340
Date January 2015
CreatorsLi, Han
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds