This report focuses on the utilisation of flight mechanics in the context of aircraftconceptual design to assess stability, control, and motion characteristics. The pri-mary objective is to acquire the equations of motion and implement longitudinalstability and control criteria using Pacelab Aircraft Preliminary Design 8.1, a com-mercial software tool. The equations and criteria employed in this study are derivedfrom an extensive review of relevant literature.By incorporating a dedicated Flight Mechanics chapter within the software, it be-comes possible to evaluate aircraft concepts under varying conditions. To ensureaccuracy and validity, DATCOM+ and OpenVSP were employed for testing andverification purposes.The key aspects covered in this report include flight mechanics, its implementationin Pacelab APD 8.1, determination of aerodynamic derivatives, formulation of equa-tions of motion, and their application to the B747 aircraft model. The emphasis liesin assessing longitudinal stability and control, including specific characteristics suchas the phugoid and short period modes.This report provides valuable insights into the integration of flight mechanics withinthe Pacelab APD 8.1 software for aircraft conceptual design. The results contributeto a better understanding of stability and control parameters and their impact onaircraft performance.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-196520 |
Date | January 2023 |
Creators | Giota, Argyro, Roszkowska, Aleksandra |
Publisher | Linköpings universitet, Fluida och mekatroniska system |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds