Immune genes of the major histocompatibility complex (MHC) constitute a central component of the adaptive immune system and play an essential role in parasite resistance and associated life-history strategies. In addition to pathogen-mediated selection also sexual selection mechanisms have been identified as the main drivers of the typically-observed high levels of polymorphism in functionally important parts of the MHC. The recognition of the individual MHC constitution is presumed to be mediated through olfactory cues. Indeed, MHC genes are in physical linkage with olfactory receptor genes and alter the individual body odour. Moreover, they are expressed on sperm and trophoplast cells. Thus, MHC-mediated sexual selection processes might not only act in direct mate choice decisions, but also through cryptic processes during reproduction.
Bats (Chiroptera) represent the second largest mammalian order and have been identified as important vectors of newly emerging infectious diseases affecting humans and wildlife. In addition, they are interesting study subjects in evolutionary ecology in the context of olfactory communication, mate choice and associated fitness benefits. Thus, it is surprising that Chiroptera belong to the least studied mammalian taxa in terms of their MHC evolution. In my doctoral thesis I aimed to gain insights in the evolution and diversity pattern of functional MHC genes in some of the major New World bat families by establishing species-specific primers through genome-walking into unknown flanking parts of familiar sites. Further, I took a free-ranging population of the lesser bulldog bat (Noctilio albiventris) in Panama as an example to understand the functional importance of the individual MHC constitution in parasite resistance and reproduction as well as the possible underlying selective forces shaping the observed diversity.
My studies indicated that the typical MHC characteristics observed in other mammalian orders, like evidence for balancing and positive selection as well as recombination and gene conversion events, are also present in bats shaping their MHC diversity. I found a wide range of copy number variation of expressed DRB loci in the investigated species. In Saccopteryx bilineata, a species with a highly developed olfactory communication system, I found an exceptionally high number of MHC loci duplications generating high levels of variability at the individual level, which has never been described for any other mammalian species so far. My studies included for the first time phylogenetic relationships of MHC genes in bats and I found signs for a family-specific independent mode of evolution of duplicated genes, regardless whether the highly variable exon 2 (coding for the antigen binding region of the molecule) or more conserved exons (3, 4; encoding protein stabilizing parts) were considered indicating a monophyletic origin of duplicated loci within families. This result questions the general assumed pattern of MHC evolution in mammals where duplicated genes of different families usually cluster together suggesting that duplication occurred before speciation took place, which implies a trans-species mode of evolution. However, I found a trans-species mode of evolution within genera (Noctilio, Myotis) based on exon 2 signified by an intermingled clustering of DRB alleles. The gained knowledge on MHC sequence evolution in major New World bat families will facilitate future MHC investigations in this order.
In the N. albiventris study population, the single expressed MHC class II DRB gene showed high sequence polymorphism, moderate allelic variability and high levels of population-wide heterozygosity. Whereas demographic processes had minor relevance in shaping the diversity pattern, I found clear evidence for parasite-mediated selection. This was evident by historical positive Darwinian selection maintaining diversity in the functionally important antigen binding sites, and by specific MHC alleles which were associated with low and high ectoparasite burden according to predictions of the ‘frequency dependent selection hypothesis’. Parasite resistance has been suggested to play an important role in mediating costly life history trade-offs leading to e.g. MHC- mediated benefits in sexual selection. The ‘good genes model’ predicts that males with a genetically well-adapted immune system in defending harmful parasites have the ability to allocate more resources to reproductive effort. I found support for this prediction since non-reproductive adult N. albiventris males carried more often an allele associated with high parasite loads, which differentiated them genetically from reproductively active males as well as from subadults, indicating a reduced transmission of this allele in subsequent generations. In addition, they suffered from increased ectoparasite burden which presumably reduced resources to invest in reproduction. Another sign for sexual selection was the observation of gender-specific difference in heterozygosity, with females showing lower levels of heterozygosity than males. This signifies that the sexes differ in their selection pressures, presumably through MHC-mediated molecular processes during reproduction resulting in a male specific heterozygosity advantage. My data make clear that parasite-mediated selection and sexual selection are interactive and operate together to form diversity at the MHC. Furthermore, my thesis is one of the rare studies contributing to fill the gap between MHC-mediated effects on co-evolutionary processes in parasite-host-interactions and on aspects of life-history evolution. / Innerhalb des adaptiven Immunsystems spielen die Gene des MHC (Major Histocompatibility Complex) eine zentrale Rolle. Neben ihrer Funktion für die körpereigene Parasitenabwehr haben sie auch einen entscheidenden Einfluss auf damit verbundene ‚life-history’ Strategien. Typischerweise sind die funktional für die Pathogenerkennung wichtigen Genabschnitte hoch variabel, was evolutiv nicht nur durch die Vielfalt der Pathogene bedingt ist, sondern im Zuge der sexuellen Selektion durch entsprechende Partnerwahl gefördert wird. Dabei wird die individuelle MHC-Konstitution sehr wahrscheinlich über körpereigene Duftstoffe vermittelt, denn MHC Gene bestimmen nicht nur den individuellen Körpergeruch, sondern liegen in chromosomaler Kopplung mit olfaktorischen Rezeptorgenen. Außerdem werden sie auch auf Sperma- und Trophoplastenzellen exprimiert, so dass MHC-bedingte sexuelle Selektionsmechanismen nicht nur über die direkte Partnerwahl, sondern auch durch kryptische Mechanismen während der Fortpflanzung wirken können.
Fledermäuse und Flughunde (Chiroptera) bilden die zweitgrößte Säugetiergruppe und gelten als wichtiges Reservoir und Überträger für den Menschen und andere Wildtiere hoch infektiöser Krankheiten. Innerhalb der evolutionären Ökologie sind sie außerdem auf Grund ihrer z.T. komplexen olfaktorischen Kommunikation während der Partner-wahl und den damit verbundenen fitness relevanten Vorteilen interessante Forschungsobjekte. In Anbetracht dessen ist es erstaunlich, dass bisher so gut wie nichts über den MHC in dieser Säugergruppe bekannt ist. Das Ziel meiner Dissertation war es, zum einen Einblicke in die Evolution und Diversität funktional wichtiger MHC Gene (MHC Klasse II DRB) bei Fledermäusen zu erhalten, und zum anderen zu untersuchen, inwieweit die individuelle MHC-Konstitution am Beispiel der kleinen Hasenmaulfledermaus (Noctilio albiventris) einen Einfluss auf Parasitenresistenz und Fortpflanzung hat und welche Selektionsmechanismen dabei für das entstandene genetische Diversitätsmuster verantwortlich sind.
Meine Arbeit zeigt, dass Prozesse, die bei anderen Vertebratenordnungen das Diversitätsmuster am MHC hervorrufen, wie balancierende und positive Selektion, Rekombination und Genkonversion ebenfalls für Fledermäuse zutreffen. In der Anzahl exprimierter DRB loci unterscheiden sich die untersuchten Fledermausarten allerdings beträchtlich. Bemerkenswert ist die extrem hohe Anzahl DRB loci bei Saccopteryx bilineata, die in dieser Ausprägung noch bei keiner anderen Säugetierart beschrieben wurde, einer Fledermaus mit einem hoch entwickelten olfaktorischen Kommunikations-system. Die hier erstmals durchgeführten phylogenetischen Untersuchungen zeigen, dass sich anders als für die meisten anderen Säugetiergruppen beschrieben, die duplizierten DRB Loci unabhängig voneinander entwickelt haben. Dieser mono-phyletische Ursprung duplizierter Loci innerhalb von Fledermausfamilien bestätigte sich für alle Bereiche des Genes: dem hochvariablen Exon 2, das für den funktional entscheidenden Pathogen-bindenden Bereich des Proteins kodiert, sowie für Exon 3 und 4, die für die Molekülstruktur erhaltende Bereiche des Proteins kodieren. Innerhalb der Gattungen (Noctilio, Myotis), basierend auf Exon 2, fand ich das für andere Säugergruppen typische Bild eines ‚trans-species polymorphism’, bei dem MHC-Allele von verschiedenen Arten sich untereinander ähnlicher sein können als Allele der gleichen Art. Meine Ergebnisse sind ein wichtiger Beitrag zum Verständnis der MHC Evolution in der Gruppe der Fledermäuse und liefern hilfreiche Kenntnisse für zukünftige Studien zum MHC in dieser Säugetierordnung.
Meine Studien an einer frei lebenden Population der kleinen Hasenmaulfledermaus zeigten dass der exprimierte DRB Locus typische Anzeichen pathogenbedingter aber auch sexueller Selektionsmechanismen zeigt. Ich fand eine ausgeprägte populations-weite Heterozygotie, positive darwinsche Selektion, die den Polymorphismus in Codons die direkt an der Pathogenerkennung beteiligt sind erhält, sowie spezifische Allele die entweder mit einer erhöhten oder einer geringen Parasitenbelastung einhergehen, entsprechend den Annahmen der ‚Frequenz-abhängigen Selektions-Hypothese’. Die individuelle Parasitenresistenz gilt als ein wichtiger Faktor um ressourceabhängige ‚life-history’ Strategien auszuloten. Vor allem Männchen mit einem effektiven Immunsystem, sollten mehr Energien für die Fortpflanzung zur Verfügung haben (‚good-genes model’). Meine Daten bestätigen diese Annahme, Männchen die stärker parasitisiert waren, waren weniger häufig reproduktiv aktiv und trugen häufiger ein DRB-Allele das mit erhöhter Parasitenbelastung einherging. Genetisch unterschieden sie sich darin nicht nur von den reproduktiv aktiven Männchen der Population sondern auch von den Jungtieren. Die Jungtiere trugen zudem häufiger ein für die Parasitenabwehr vorteilhaftes Allel. Die Ergebnisse zeigen dass die individuelle MHC-Konstitution einen nicht zu unterschätzenden Einfluss auch auf den Reproduktionserfolg eines Männchens haben kann und vorteilhafte Allele sich bereits in nachfolgenden Generationen durchsetzen. Meine Doktorarbeit gehört damit zu einer der seltenen Studien, die nicht nur zeigen konnte inwieweit der MHC an co-evolutionären Prozessen der Parasit-Wirt-Interaktion beteiligt ist, sondern dass er darüber hinaus auch direkt für die individuelle ‚life-history’ Entwicklung von Bedeutung ist.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6351 |
Date | January 2012 |
Creators | Schad, Julia |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0035 seconds