Return to search

Wireless electrocardiogram based on ultra-wideband communications

The goal for this master thesis is to develop a prototype that uses ultra-wideband (UWB) communications to wirelessly transfer electrocardiogram (ECG) data from an ECG measurement unit to an Android device (smartphone or similar) which is used to process and display the ECG signals. The prototype should consist of two hardware nodes; (1) Node one having a ECG measurement unit (an AD8232 single lead heart rate monitor), an UWB communication module (a Decawave DWM1000 module) and a microcontroller (an Arduino DUE); and (2) Node two having an Android device (an Android smartphone), an UWB communication module (a Decawave DWM1000 module) and a microcontroller (an Arduino DUE). On Node one the AD8232 monitor for ECG measurements is connected to an analog input (with an analog to digital converter (ADC)) on the Arduino and the DWM1000 module is connected to the Arduino via serial peripheral interface (SPI). On Node two the DWM1000 is connected to the Arduino via SPI to receive ECG data from Node one, and the Arduino is connected to the smartphone through a serial USB cable with an USB on-the-go adapter to send the ECG data to the smartphone, where it is filtered and displayed with an Android application. The application has the potential to add, for example, ECG analysis for diagnosing heart activities with artificial intelligence (AI) and further transmit the ECG data for remote medical care. The Arduino is programmed in Arduino IDE (integrated development environment) to handle ECG measurements and UWB communications (transmitting and receiving ECG data), which is limited to a single UWB channel because of limitations of the DWM1000 module. The Android application is created using Android studio, and it can process (with a notch filter) and display 1-12 channel ECG. The prototype has been built and tested. The results show that a single lead ECG measurement can be sent via UWB communication to a smartphone to display in real time. Multiple data channels (1-12 analog inputs on the Arduino) can be multiplexed, transmitted and displayed in real time. This thesis concludes that UWB has huge development potential, and will likely be used for various wireless devices in the future.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-382015
Date January 2019
CreatorsToll, Maria
PublisherUppsala universitet, Signaler och System
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 19007

Page generated in 0.0024 seconds