Return to search

La microscopie à illumination à tavelure laser de type HiLo pour l'imagerie volumétrique rapide de l'activité calcique du cerveau du poisson-zèbre

Ce présent projet de maîtrise porte sur le développement et l'optimisation d'une technique d'imagerie volumétrique rapide à grand champ, appelée la microscopie HiLo, pour imager l'activité calcique du cerveau de poisson-zèbres transgéniques GCaMP au stade juvénile. La microscopie HiLo peut effectivement amener divers avantages au domaine, tels que les faibles coûts et la facilité de conception et d'alignement, tout en procurant des performances d'imagerie similaires aux techniques déjà utilisées dans le domaine. Elle produit des images sectionnées optiquement en combinant deux images à grand champ pour extraire les informations provenant uniquement du plan focal : une à illumination uniforme et l'autre à illumination à tavelures laser. Le contraste des tavelures laser est un paramètre intéressant pour moduler l'épaisseur du sectionnement optique selon les besoins. Dans ce projet, un module Python est développé pour aider à la conception optique, ce qui est employé pour concevoir et construire le microscope HiLo avec les composantes optiques optimales. Le microscope est testé de multiple façon expérimentalement, définissant ses paramètres d'imagerie et démontrant ses performances. Un des aspects les plus intéressants du système est l'incorporation d'une lentille à focale variable pour produire des images volumétriques ainsi qu'un réducteur de tavelures laser pour alterner entre les deux types d'illumination. Beaucoup de travail est fait en ce qui concerne leur optimisation et synchronisation dans le système HiLo. L'algorithme permettant de produire des images sectionnées optiquement avec les deux images brutes à grand champ est développé en langage de programmation Python pour faciliter son utilisation future. Finalement, l'utilisation du microscope HiLo pour acquérir des images d'activité calcique du cerveau de poisson-zèbres permet de conclure que cette technique est prometteuse pour obtenir de l'information sur les connectivités du cerveau selon différents stimuli et stades de développement compte tenu de sa rapidité d'acquisition, son sectionnement optique et son faible coût. / The goal of this master's project is to optimize and develop a widefield imaging technique called HiLo microscopy for fast volumetric calcium imaging in a juvenile transgenic zebrafish brain expressing GCaMP. HiLo microscopy brings multiple advantages to the field, such as the low cost and the ease to design and align it and its performance is comparable to techniques already used in the field. The HiLo technique produces optically sectioned images by combining two raw widefield images to extract the information coming exclusively from the focal plane only. The first of the two images is acquired with a uniform illumination and the second is acquired with a speckle illumination. The speckle contrast is an interesting parameter to tune the optical sectioning thickness because they are indicators of objects' depth position. In this project, a Python module is developed to simulate optical design and calculations, which is then used to design the HiLo microscope with the most optimal optical components. The microscope's function is also tested with many different experiments that define its imaging parameters and demonstrates its performances. Some of the most interesting aspects of this system are the use of an electrically tunable lens to scan the sample in depth and a laser speckle reducer that is used to switch between the uniform and speckle illumination patterns. A significant amount of work is done to optimize and synchronize the components in the system. Next, the algorithm used to produce the optically sectioned images is also developed in this project with the Python programming language to facilitate its future usage. Finally, the HiLo microscope is used to produce calcium imaging acquisitions of zebrafish brains, which show that HiLo microscopy is promising to obtain connectivity information of the brain with different stimuli and at different developmental stages due to its fast acquisition speed, optical sectioning and low cost.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/73447
Date30 May 2022
CreatorsPineau Noël, Valérie
ContributorsDe Koninck, Paul, Côté, Daniel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xii, 100 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0024 seconds