Den växande globala användningen av sociala medier skapar enorma mängder social data online, kallat för Big Social Data (BSD). Tidigare forskning lyfter problem med att BSD ofta har bristande tillförlitlighet som underlag vid beslutsfattande och att det är starkt kopplat till dataoch informationskvalitet. Det finns dock en avsaknad av forskning som redogör för praktikers perspektiv på detta. Därför undersökte denna studie vad som upplevs problematiskt kring transformation av BSD till tillförlitlig information för beslutsfattande i en organisationskontext, samt hur detta skiljer sig i teori jämfört med praktik. En fallstudie gjordes av mjukvaruföretaget SAS Institute (SAS). Datainsamlingen genomfördes via intervjuer samt insamling av dokument och resultaten analyserades kvalitativt. Studien gjorde många intressanta fynd gällande upplevda problem kopplat till transformation av BSD, bl.a. hög risk för partisk data och låg analysmognad, samt flera skillnader mellan teori och praktik. Tidigare forskning gör inte heller skillnad mellan begreppen datakvalitet och informationskvalitet, vilket görs i praktiken. / The growing use of social media generates enormous amounts of online social data, called Big Social Data (BSD). Previous research highlights problems with BSD reliability related to decision making, and that reliability is strongly connected to data quality and information quality. However, there is a lack of research with a focus on practitioners’ perspectives on this matter. To address this gap, this study set out to investigate what is perceived as a problem when transforming BSD into reliable information for decision making in an organisational context, and also how this differs in theory compared with practice. A case study was conducted of the software company SAS Institute (SAS). Data collection was done through interviews and gathering of documents, and results were analysed qualitatively. The study resulted in many interesting findings regarding perceived problems connected to the transformation of BSD, e.g. high risk of biased data and low maturity regarding data analysis, as well as several differences between theory and practice. Furthermore, previous research makes no distinction between the terms data quality and information quality, but this is done in practice.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-414032 |
Date | January 2020 |
Creators | Rangnitt, Eric, Wiljander, Louise |
Publisher | Uppsala universitet, Institutionen för informatik och media, Uppsala universitet, Institutionen för informatik och media |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0067 seconds