Time- series Generative Adversarial Networks (TimeGAN) is proposed to overcome the GAN model’s insufficiency in producing synthetic samples that inherit the predictive ability of the original timeseries data. TimeGAN combines the unsupervised adversarial loss in the GAN framework with a supervised loss adopted from an autoregressive model. However, TimeGAN is like another GANbased model that only learns from the set of smaller sequences extracted from the original time-series. This behavior yields a severe consequence when encountering data augmentation for time-series with multiple seasonal patterns, as found in the mobile telecommunication network data. This study examined the effectiveness of the TimeGAN model with the help of Dynamic Time Warping (DTW) and different types of RNN as its architecture to produce synthetic mobile telecommunication network data, which can be utilized to improve the forecasting performance of the statistical and deep learning models relative to the baseline models trained only on the original data. The experiment results indicate that DTW helps TimeGAN maintaining the multiple seasonal attributes. In addition, either LSTM or Bidirectional LSTM as TimeGAN architecture ensures the model is robust to mode collapse problem and creates synthetic data that are diversified and indistinguishable from the original time-series. Finally, merging both original and synthetic time-series becomes a compelling way to significantly improve the deep learning model’s forecasting performance but fails to do so for the statistical model. / Time-series Generative Adversarial Networks (TimeGAN) föreslås för att övervinna GAN-modellens brist att kunna producera syntetisk data som ärver de prediktiva förmåga från den ursprungliga tidsseriedatan. TimeGAN kombinerar den icke-vägledande förlusten i GAN-ramverket tillsammans med den vägledande förlusten från en autoregressiv modell. TimeGAN liknar en vanlig GAN-baserad modell, men behöver bara en mindre uppsättning sekvenser från den ursprungliga tidsserien för att lära sig. Denna egenskap kan dock leda till allvarliga konsekvenser när man stöter på dataförstoring för tidsserier med flera säsongsmönster, vilket återfinns i mobilnätverksdata. Denna studie har undersökt effektiviteten av TimeGAN-modellen med hjälp av Dynamic Time Warping (DTW) och olika typer av RNN som dess arkitektur för att producera syntetisk mobilnätverksdata. Detta kan användas för att förbättra statistiska och djupinlärningsmodellers prognostisering relativt till modeller som bara har tränat på orginaldata. De experimentella resultaten indikerar att DTW hjälper TimeGAN att bibehålla de olika säsongsattributen. Dessutom, TimeGAN med antingen LSTM eller Bidirectional LSTM som arkitektur säkerställer att modellen är robust för lägesfallsproblem och skapar syntetisk data som är diversifierade och inte kan urskiljas från den ursprungliga tidsserien. Slutligen, en sammanslagning av både ursprungliga och syntetiska tidsserier blir ett övertygande sätt att avsevärt förbättra djupinlärningsmodellens prestanda men misslyckas med detta för den statistiska modellen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-303494 |
Date | January 2021 |
Creators | Dimyati, Hamid |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:553 |
Page generated in 0.0027 seconds