Train delays occur on a daily basis in the commuter rail of Stockholm. This means that the travellers might become delayed themselves for their particular destination. To find the most accurate method for predicting train delays, the machine learning methods decision tree with and without AdaBoost and neural network were compared with different settings. Neural network achieved the best result when used with 3 layers and 22 neurons in each layer. Its delay predictions had an average error of 122 seconds, compared to the actual delay. It might therefore be the best method for predicting train delays. However the study was very limited in time and more train departure data would need to be collected. / Tågförseningar inträffar dagligen i Stockholms pendeltågstrafik. Det orsakar att resenärerna själva kan bli försenade till deras destinationer. För att hitta den mest träffsäkra metoden för att förutspå tågförseningar jämfördes maskininlärningsmetoderna beslutsträd, med och utan AdaBoost, och artificiella neuronnät med olika inställningar. Det artificiella neuronnätet gav det bästa resultatet när det användes med 3 lager och 22 neuroner i varje lager. Dess förseningsförutsägelse hade ett genomsnittligt fel på 122 sekunder jämfört med den verkliga förseningen. Det kan därför vara den bästa metoden för att förutspå tågförseningar. Den här studien hade dock väldigt begränsat med tid och mer information om tågavgångar hade behövts samlas in.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-230224 |
Date | January 2018 |
Creators | Nilsson, Robert, Henning, Kim |
Publisher | KTH, Hälsoinformatik och logistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2018:46 |
Page generated in 0.0029 seconds