Return to search

Étude de la dépendance en température de la structure électronique à l'aide de la théorie de la fonctionnelle de la densité : effets non adiabatiques, dilatation du point zéro, couplage spin-orbite et application aux transitions de phase topologiques

Les signatures de l’existence des phonons sont omniprésentes dans les propriétés des matériaux. En première approximation, on peut scinder l'effet des phonons sur la structure électronique en deux contributions. D’une part, l'interaction électron-phonon capture la réponse électronique aux vibrations des noyaux du cristal, et d’autre, l'énergie libre de la population de phonons modifie le volume cristallin à l’équilibre. En plus d'être responsables de la dépendance en température de la structure électronique, ces deux mécanismes affectent les niveaux d'énergie à température nulle, à travers le mouvement du point zéro et l'énergie du point zéro. Cette thèse analyse l’apport de ces deux mécanismes à la renormalisation du point zéro (ZPR) de l'énergie de la bande interdite des semi-conducteurs. Une généralisation du modèle de Fröhlich prenant en compte l'anisotropie et les dégénérescences présentes dans les matériaux réels révèle que l'interaction non adiabatique entre les électrons et les noyaux domine le ZPR dans les matériaux polaires. La prise en compte de ce mécanisme dans l'évaluation de l'interaction électron-phonon est déterminante pour reproduire adéquatement les données expérimentales. L'approche développée par Grüneisen, qui néglige communément les effets du point zéro, reproduit la dilatation du point zéro du réseau (ZPLE) et sa contribution au ZPR obtenues avec la méthode standard basée sur la minimisation de l'énergie libre à moindre coût numérique, y compris pour les matériaux anisotropes. La contribution du ZPLE au ZPR total, qui a reçu peu d'attention dans la littérature, peut atteindre de 20% à plus de 80% de la contribution de l'interaction électron-phonon, y compris dans des matériaux constitués de noyaux légers. Elle domine même le ZPR du GaAs dans le contexte de la DFT semi-locale. Il est donc essentiel de traiter les deux contributions sur le même pied d'égalité pour modéliser le ZPR avec précision. L'inclusion du couplage spin-orbite (SOC) diminue le ZPR d'un ensemble substantiel de matériaux cubiques de structure zinc-blende, diamant et rock-salt. L'essentiel de cette variation tire son origine de l'effet du SOC sur les énergies électroniques statiques, qui provient en grande partie de la variation des masses effectives des bandes de valence au point \(\Gamma\). La réduction du ZPR peut être estimée à partir d'un modèle de Fröhlich généralisé auquel on a introduit le SOC. Les subtilités numériques liées au traitement de la séparation de Dresselhaus dans les matériaux non centrosymétriques sont discutées. On démontre enfin comment l'effet combiné de l'interaction électron-phonon et de la dilatation thermique affecte le diagramme de phase topologique du BiTeI. L'augmentation de la température repousse l'apparition de la phase d'isolant topologique \(\mathbb{Z}_2\) vers des pressions plus élevées et élargit la plage de pressions correspondant à la phase intermédiaire de type semi-métal de Weyl. Le caractère orbital dominant des extrema de bande influence significativement leur sensibilité à la pression et au changement de topologie. Pour guider la recherche expérimentale de phases topologiquement non triviales dans les matériaux de façon adéquate, les études numériques doivent donc considérer l'effet de la température. / Phonon signatures are ubiquitous in material properties. At first order, the effect of phonons on the electronic structure can be split into two contributions. On the one hand, the electron-phonon interaction captures the electronic response to the vibrations of the nuclei. On the other hand, the free energy of the phonon population modifies the crystalline volume at equilibrium. In addition to driving the temperature dependence of the electronic structure, these two mechanisms affect the energy levels at zero temperature through zero-point motion and zero-point energy. This thesis investigates the contribution of these two mechanisms to the zero point renormalization (ZPR) of the band gap energy of semiconductors. A generalized Fröhlich model taking into account the anisotropy and degeneracies occurring in real materials reveals that the non-adiabatic interaction between electrons and nuclei dominates the ZPR in polar materials. Taking this mechanism into account when evaluating the electron-phonon interaction is crucial to reproduce experimental data adequately. The Grüneisen formalism, which commonly neglects zero-point effects, reproduces the zero-point lattice expansion (ZPLE) and its contribution to the ZPR obtained from the standard method based on free energy minimization at lower numerical cost, including for anisotropic materials. The ZPLE contribution to the total ZPR, which has received little attention in the literature, can reach from 20% to more than 80% of the contribution of the electron-phonon interaction, including in materials containing light atoms. It even dominates the ZPR of GaAs within semilocal DFT. Therefore, both contributions should be treated on an equal footing to model the ZPR accurately. The inclusion of spin-orbit coupling (SOC) decreases the ZPR of a substantial set of cubic materials of zincblende, diamond and rocksalt structure. This variation originates mostly from the effect of SOC on the static electronic eigenvalues, which comes largely from the variation of the effective masses of the valence bands at the \(\Gamma\) point. The reduction of the ZPR can be estimated from a generalized Fröhlich model in which SOC has been introduced. Numerical subtleties related to the treatment of Dresselhaus separation in non-centrosymmetric materials are discussed. We finally show how the combination of electron-phonon interaction and thermal expansion affects the topological phase diagram of BiTeI. An increase in temperature pushes the \(\mathbb{Z}_2\) topological insulator phase towards higher pressures and widens the pressure range corresponding to the Weyl semi-metal intermediate phase. The leading orbital character of the band extrema significantly influences their sensitivity to variations in pressure and topology. To adequately guide the experimental search for topologically non-trivial phases in materials, numerical studies must therefore consider the effect of temperature.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/27817
Date07 1900
CreatorsBrousseau-Couture, Véronique
ContributorsCôté, Michel
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0076 seconds