Spelling suggestions: "subject:"density functional perturbation theory"" "subject:"clensity functional perturbation theory""
1 |
Structure, Phonons and Realated Properties in Zn-IV-N2 (IV=Si,Ge,Sn), ScN and Rare-Earth NitridesPaudel, Tula R. January 2009 (has links)
No description available.
|
2 |
Ab initio Lattice Dynamics : Hydrogen-dense and Other MaterialsKim, Duck Young January 2009 (has links)
This thesis presents a theoretical study of materials under high pressure using ab initio lattice dynamics based on density functional theory and density functional perturbation theory using both super-cell and linear response approach. Ab initio lattice dynamics using super-cell approach is applied to compare our theoretical predictions with experimental findings. Phonon dispersion curves of fcc α-γ cerium are calculated and compared with inelastic X-ray scattering data. Pressure dependency of phonon density of states in two cubic phases TiO2 allows us to assign the observed cubic phase in experiments to be of fluorite rather than pyrite structure. Dynamical stability of cotunnite TiO2 phase at low pressure can explain the observed quenching phenomena in experiments. Our calculated O2 vibron mode in both ε-ζ phases of solid oxygen supports the hypothesis that both phases are iso-structural. Hydrogen-dense materials attract great attention not only because they open a path to study phenomena related to metallization (superconductivity) of solid hydrogen but also because they are closely related to important industrial applications (hydrogen storage). Using linear response method, we find that metallic fcc-AlH3 is dynamically stabilized in the range of 72-106 GPa and can persist at ambient pressure if finite temperature effects are considered. For SiH4, we test dynamical stability, Raman spectra, zero point energy, and utilize GW calculations for self energy correction. We find that a metallic tetragonal phase of SiH4 can be assigned to the experimentally observed one. Our ab initio lattice dynamics calculations based on density functional perturbation theory predict that fcc-YH3 is a pressure-induced superconductor with a high transition temperature of 40 K at 17.7 GPa. With increasing pressure this material undergoes a superconductor-metal-superconductor transition and the underlying mechanism of this transition can simultaneously explains also the observed metal-insulator transition at 25 GPa in YH3-δ.
|
3 |
Etudes ab initio des effets de la température sur le spectre optique des semi-conducteursBoulanger, Paul 10 1900 (has links)
Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique) / La dépendance en température des spectres optiques des semi-conducteurs est discutée en fonction de la variation des énergies propres électroniques induite par l’interaction électron-phonon. Une démonstration formelle de la théorie de Allen-Heine-Cardona (AHC), la plus populaire dans le domaine, est présentée. Cette théorie est basée sur la théorie des perturbations et les approximations adiabatique, harmonique et des ions rigides. Une revue complète des applications semi-empiriques de cette théorie est aussi incluse dans ce document.
Un nouveau formalisme ab initio basé sur la théorie des perturbations de la fonctionnelle de la densité (DFPT) est développé dans cette thèse. Ce formalisme est implémenté dans la distribution ABINIT. Dans cette nouvelle formulation, les fonctions d’onde de premier ordre sont déterminées grâce au principe variationnel et ne sont donc pas construites à partir des fonctions d’onde non perturbées, comme c’est le cas pour la théorie AHC. La théorie AHC présente une convergence lente sur le nombre d’états intermédiaires inclus dans la simulation : il faut inclure 2000 états pour un traitement adéquat de la molécule de H2 et 400 états pour le silicium. Le formalisme DFPT, quant à lui, ne nécessite que l’inclusion des états étudiés, ce qui mène à une diminution du temps de calcul par un facteur 20. Pour les molécules diatomiques,les résultats obtenus reproduisent ceux provenant de la méthode des différences finies. Pour le silicium, les résultats des études semi-empiriques antérieures sont retrouvés. Par contre, dans le cas du diamant, les résultats sont grandement sous-estimés. Ceci semble provenir de l’utilisation de la LDA.
La méthode des différences finies utilisée dans le cas des molécules diatomiques a permis l’évaluation directe de la validité de l’approximation des ions rigides en évaluant le terme de Debye-Waller non diagonal (NDDW). Le terme NDDWcontribue entre 11 % pour la molécule de CO et 60 % pour la molécule de LiF ce qui signifie que l’approximation des ions rigide n’est pas valide. Cette approximation est donc perçue comme étant la cause du mauvais accord entre les observations expérimentales et les simulations théoriques pour les semi-conducteurs cristallins. / The thermal corrections to the optical spectra of semiconductors are discussed interms of the variation of the single electron eigenenergies and the electron-phonon coupling. A formal derivation of the leading Allen-Heine-Cardona theory is presented. This theory is based on standard perturbation theory within the adiabatic, the harmonic and rigid-ion approximations. A full review of the successful application of this theory in the semi-empirical literature is also included.
A new ab initio formalism based on DFPT is developed and implemented in the ABINIT package. In this new formulation of the theory of the electron-phonon coupling, the first-order wave functions are determined by a variational principle and are thus not constructed using the unperturbed wave functions. This is in contrast to the Allen- Heine-Cardona theory in which a slow convergence on the number of included states his observed : one must include 2000 states for the correct treatment of H2 and 400 states for silicon. Using the DFPT formalism with only 10 bands yields a decrease in calculation times by a factor of 20. This new implementation of the DFPT formalism was tested using the cases studies of diatomic molecules, silicon and diamond. The results obtained for the diatomic molecules reproduce finite difference calculations up to the numerical error present in the finite difference approach. The procedure reproduces the result of previous semi-empirical studies for silicon but underestimates drastically the electron-phonon coupling in diamond. This is shown to originate from the LDA.
Finally, the finite difference method used in the diatomic molecules permitted the direct evaluation of the validity of the rigid-ion approximation by evaluating the non-site-diagonal Debye-Waller term. It was found that this term partially cancels the sum of the site-diagonal Debye-Waller and Fan term. It contributes from 11 % of this sum for CO to 60 % for LiF and is by no means negligible in any system considered. The mismatch between experimental observations and theoretical simulations in crystalline semiconductors is thus believed to originate from this approximation.
|
4 |
A new SOS-DFPT approximation for NMR shielding calculations : the Loc.3 correction applied to the catalytic mechanism of Serine ProteasesFadda, Elisa January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
5 |
Etudes ab initio des effets de la température sur le spectre optique des semi-conducteursBoulanger, Paul 10 1900 (has links)
La dépendance en température des spectres optiques des semi-conducteurs est discutée en fonction de la variation des énergies propres électroniques induite par l’interaction électron-phonon. Une démonstration formelle de la théorie de Allen-Heine-Cardona (AHC), la plus populaire dans le domaine, est présentée. Cette théorie est basée sur la théorie des perturbations et les approximations adiabatique, harmonique et des ions rigides. Une revue complète des applications semi-empiriques de cette théorie est aussi incluse dans ce document.
Un nouveau formalisme ab initio basé sur la théorie des perturbations de la fonctionnelle de la densité (DFPT) est développé dans cette thèse. Ce formalisme est implémenté dans la distribution ABINIT. Dans cette nouvelle formulation, les fonctions d’onde de premier ordre sont déterminées grâce au principe variationnel et ne sont donc pas construites à partir des fonctions d’onde non perturbées, comme c’est le cas pour la théorie AHC. La théorie AHC présente une convergence lente sur le nombre d’états intermédiaires inclus dans la simulation : il faut inclure 2000 états pour un traitement adéquat de la molécule de H2 et 400 états pour le silicium. Le formalisme DFPT, quant à lui, ne nécessite que l’inclusion des états étudiés, ce qui mène à une diminution du temps de calcul par un facteur 20. Pour les molécules diatomiques,les résultats obtenus reproduisent ceux provenant de la méthode des différences finies. Pour le silicium, les résultats des études semi-empiriques antérieures sont retrouvés. Par contre, dans le cas du diamant, les résultats sont grandement sous-estimés. Ceci semble provenir de l’utilisation de la LDA.
La méthode des différences finies utilisée dans le cas des molécules diatomiques a permis l’évaluation directe de la validité de l’approximation des ions rigides en évaluant le terme de Debye-Waller non diagonal (NDDW). Le terme NDDWcontribue entre 11 % pour la molécule de CO et 60 % pour la molécule de LiF ce qui signifie que l’approximation des ions rigide n’est pas valide. Cette approximation est donc perçue comme étant la cause du mauvais accord entre les observations expérimentales et les simulations théoriques pour les semi-conducteurs cristallins. / The thermal corrections to the optical spectra of semiconductors are discussed interms of the variation of the single electron eigenenergies and the electron-phonon coupling. A formal derivation of the leading Allen-Heine-Cardona theory is presented. This theory is based on standard perturbation theory within the adiabatic, the harmonic and rigid-ion approximations. A full review of the successful application of this theory in the semi-empirical literature is also included.
A new ab initio formalism based on DFPT is developed and implemented in the ABINIT package. In this new formulation of the theory of the electron-phonon coupling, the first-order wave functions are determined by a variational principle and are thus not constructed using the unperturbed wave functions. This is in contrast to the Allen- Heine-Cardona theory in which a slow convergence on the number of included states his observed : one must include 2000 states for the correct treatment of H2 and 400 states for silicon. Using the DFPT formalism with only 10 bands yields a decrease in calculation times by a factor of 20. This new implementation of the DFPT formalism was tested using the cases studies of diatomic molecules, silicon and diamond. The results obtained for the diatomic molecules reproduce finite difference calculations up to the numerical error present in the finite difference approach. The procedure reproduces the result of previous semi-empirical studies for silicon but underestimates drastically the electron-phonon coupling in diamond. This is shown to originate from the LDA.
Finally, the finite difference method used in the diatomic molecules permitted the direct evaluation of the validity of the rigid-ion approximation by evaluating the non-site-diagonal Debye-Waller term. It was found that this term partially cancels the sum of the site-diagonal Debye-Waller and Fan term. It contributes from 11 % of this sum for CO to 60 % for LiF and is by no means negligible in any system considered. The mismatch between experimental observations and theoretical simulations in crystalline semiconductors is thus believed to originate from this approximation. / Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique)
|
6 |
Density functional perturbation theory for modeling of weak interactions and spectroscopy in the condensed phase / Théorie des perturbations de la fonctionnelle de densité pour la modélisation des interactions faibles et de la spectroscopie en phase condenséeScherrer, Arne 26 October 2016 (has links)
Cette thèse porte sur l'étude des interactions faibles et de la spectroscopie vibrationnelle en phase condensée à partir d'un développement théorique basé sur la théorie de la perturbation de la fonctionnelle de densité. D'une part des corrections de la fonction d'onde Born-Oppenheimer ont été calculées pour déterminer le moment magnétique induit par les vibrations et ainsi calculer des spectres de dichroïsme circulaire vibrationnel. D'autre part, une modélisation des effets de polarisation est réalisée à l'aide d'une nouvelle représentation de la susceptibilité électronique non-locale. / This thesis deals with the development and application of computational methods for the efficient and accurate calculation of spectroscopic parameters and non-covalent inter-molecular interactions in condensed-phase systems from quantum chemical methods. Specifically, electronic current densities and polarizability effects are computed using density functional perturbation theory. The nuclear velocity perturbation theory is rigorously derived from the exact factorization of the electron-nuclear wave function. Its implementation within a large-scale electronic structure program package is reported and the calculation of dynamical vibrational circular dichroism in the condensed phase is demonstrated. A position-dependent mass of nuclei in molecules is derived, addressing the fundamental questions as to how masses move in a molecule. First steps towards a density-based modeling of inter-molecular interactions using a compact representation of the electronic susceptibility are devised.
|
7 |
Calcul de la réponse à la déformation et au champ électrique dans le formalisme "Projector Augmented-Wave". Application au calcul de vitesse du son de matériaux d'intérêt géophysique. / « Projector Augmented-Wave » formulation of response to strain and electric field perturbation within the DFPT. Application to the calculation of sound velocities in materials of geophysical interest.Martin, Alexandre 06 November 2015 (has links)
La composition interne de notre planète est un vaste sujet d’étude auquel participent de nombreuses disciplines scientifiques. Les conditions extrêmes de pression et de température qui règnent à l’intérieur du noyau (constitué principalement de fer et de nickel) et du manteau terrestre (à base de pérovskites) rendent très difficile la détermination de leur compositions exactes. Ce projet de thèse contribue aux études récentes dont l’enjeu est de déterminer plus précisément le chimisme des minéraux présents. Il a pour objet le développement d’un outil de calcul des vitesses de propagation des ondes sismiques a l’aide d’une méthode fondée sur les simulations ab initio. Ces vitesses sont déduites du tenseur élastique complet, incluant la relaxation atomique et les modifications induites du champ cristallin. Nous utilisons l’approche de la théorie de perturbation de la fonctionnelle de la densité (DFPT) qui permet de s'affranchir des incertitudes numériques qu’impliquent les méthodes classiques basées sur des différences finies. Nous combinons cette approche avec le formalisme « Projector Augmented-Wave » (PAW) qui permet, avec un coût de calcul faible, de prendre en compte tous les électrons du système. Nous avons appliqué la méthode sur des matériaux du noyau et du manteau terrestre. Nous avons déterminé les effets de différents éléments légers (Si, S, C, O et H) sur les vitesses de propagation des ondes sismiques dans le fer pur ainsi que celui de l’aluminium dans la pérovskite MgSiO3. / The internal composition of our planet is a large topic of study and involves many scientific disciplines. The extreme conditions of pressure and temperature prevailing inside the core (consisting primarily of iron and nickel) and the mantle (consisting mainly of perovskites) make the determination of the exact compositions very difficult. This thesis contributes to recent studies whose aim is to determine more accurately the chemistry of these minerals. Its purpose is the development of a tool for the calculation of seismic wave velocities within methods based on ab-initio simulations. These velocities are calculated from the full elastic tensor, including the atomic relaxation and induced changes in the crystal field. We use the approach of the density functional perturbation theory (DFPT) to eliminate numerical uncertainties induced by conventional methods based on finite differences. We combine this approach with the « Projector Augmented-Wave » (PAW) formalism that takes into account all the electrons of the system with a low computational cost. We apply the method on core and mantle materials and we determine the effects of various lights elements (Si, S, C, O and H) on the seismic wave velocities of pure iron, as well as the effect of aluminum in the perovskite MgSiO3.
|
8 |
Étude de la dépendance en température de la structure électronique à l'aide de la théorie de la fonctionnelle de la densité : effets non adiabatiques, dilatation du point zéro, couplage spin-orbite et application aux transitions de phase topologiquesBrousseau-Couture, Véronique 07 1900 (has links)
Les signatures de l’existence des phonons sont omniprésentes dans les propriétés des matériaux. En première approximation, on peut scinder l'effet des phonons sur la structure électronique en deux contributions. D’une part, l'interaction électron-phonon capture la réponse électronique aux vibrations des noyaux du cristal, et d’autre, l'énergie libre de la population de phonons modifie le volume cristallin à l’équilibre. En plus d'être responsables de la dépendance en température de la structure électronique, ces deux mécanismes affectent les niveaux d'énergie à température nulle, à travers le mouvement du point zéro et l'énergie du point zéro. Cette thèse analyse l’apport de ces deux mécanismes à la renormalisation du point zéro (ZPR) de l'énergie de la bande interdite des semi-conducteurs. Une généralisation du modèle de Fröhlich prenant en compte l'anisotropie et les dégénérescences présentes dans les matériaux réels révèle que l'interaction non adiabatique entre les électrons et les noyaux domine le ZPR dans les matériaux polaires. La prise en compte de ce mécanisme dans l'évaluation de l'interaction électron-phonon est déterminante pour reproduire adéquatement les données expérimentales. L'approche développée par Grüneisen, qui néglige communément les effets du point zéro, reproduit la dilatation du point zéro du réseau (ZPLE) et sa contribution au ZPR obtenues avec la méthode standard basée sur la minimisation de l'énergie libre à moindre coût numérique, y compris pour les matériaux anisotropes. La contribution du ZPLE au ZPR total, qui a reçu peu d'attention dans la littérature, peut atteindre de 20% à plus de 80% de la contribution de l'interaction électron-phonon, y compris dans des matériaux constitués de noyaux légers. Elle domine même le ZPR du GaAs dans le contexte de la DFT semi-locale. Il est donc essentiel de traiter les deux contributions sur le même pied d'égalité pour modéliser le ZPR avec précision. L'inclusion du couplage spin-orbite (SOC) diminue le ZPR d'un ensemble substantiel de matériaux cubiques de structure zinc-blende, diamant et rock-salt. L'essentiel de cette variation tire son origine de l'effet du SOC sur les énergies électroniques statiques, qui provient en grande partie de la variation des masses effectives des bandes de valence au point \(\Gamma\). La réduction du ZPR peut être estimée à partir d'un modèle de Fröhlich généralisé auquel on a introduit le SOC. Les subtilités numériques liées au traitement de la séparation de Dresselhaus dans les matériaux non centrosymétriques sont discutées. On démontre enfin comment l'effet combiné de l'interaction électron-phonon et de la dilatation thermique affecte le diagramme de phase topologique du BiTeI. L'augmentation de la température repousse l'apparition de la phase d'isolant topologique \(\mathbb{Z}_2\) vers des pressions plus élevées et élargit la plage de pressions correspondant à la phase intermédiaire de type semi-métal de Weyl. Le caractère orbital dominant des extrema de bande influence significativement leur sensibilité à la pression et au changement de topologie. Pour guider la recherche expérimentale de phases topologiquement non triviales dans les matériaux de façon adéquate, les études numériques doivent donc considérer l'effet de la température. / Phonon signatures are ubiquitous in material properties. At first order, the effect of phonons on the electronic structure can be split into two contributions. On the one hand, the electron-phonon interaction captures the electronic response to the vibrations of the nuclei. On the other hand, the free energy of the phonon population modifies the crystalline volume at equilibrium. In addition to driving the temperature dependence of the electronic structure, these two mechanisms affect the energy levels at zero temperature through zero-point motion and zero-point energy. This thesis investigates the contribution of these two mechanisms to the zero point renormalization (ZPR) of the band gap energy of semiconductors. A generalized Fröhlich model taking into account the anisotropy and degeneracies occurring in real materials reveals that the non-adiabatic interaction between electrons and nuclei dominates the ZPR in polar materials. Taking this mechanism into account when evaluating the electron-phonon interaction is crucial to reproduce experimental data adequately. The Grüneisen formalism, which commonly neglects zero-point effects, reproduces the zero-point lattice expansion (ZPLE) and its contribution to the ZPR obtained from the standard method based on free energy minimization at lower numerical cost, including for anisotropic materials. The ZPLE contribution to the total ZPR, which has received little attention in the literature, can reach from 20% to more than 80% of the contribution of the electron-phonon interaction, including in materials containing light atoms. It even dominates the ZPR of GaAs within semilocal DFT. Therefore, both contributions should be treated on an equal footing to model the ZPR accurately. The inclusion of spin-orbit coupling (SOC) decreases the ZPR of a substantial set of cubic materials of zincblende, diamond and rocksalt structure. This variation originates mostly from the effect of SOC on the static electronic eigenvalues, which comes largely from the variation of the effective masses of the valence bands at the \(\Gamma\) point. The reduction of the ZPR can be estimated from a generalized Fröhlich model in which SOC has been introduced. Numerical subtleties related to the treatment of Dresselhaus separation in non-centrosymmetric materials are discussed. We finally show how the combination of electron-phonon interaction and thermal expansion affects the topological phase diagram of BiTeI. An increase in temperature pushes the \(\mathbb{Z}_2\) topological insulator phase towards higher pressures and widens the pressure range corresponding to the Weyl semi-metal intermediate phase. The leading orbital character of the band extrema significantly influences their sensitivity to variations in pressure and topology. To adequately guide the experimental search for topologically non-trivial phases in materials, numerical studies must therefore consider the effect of temperature.
|
Page generated in 0.1866 seconds