• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The measurement of gamma ray transition probabilities in light elements

Lawson, P. G. January 1968 (has links)
No description available.
2

Crystal structures of some complex compounds of the light elements

Clarke, P. T. January 1964 (has links)
No description available.
3

The Abundance of Boron in Diffuse Interstellar Clouds

Ritchey, Adam M. 23 September 2009 (has links)
No description available.
4

Matériaux magnétocaloriques pour la réfrigération magnétique à température ambiante / Magnetocaloric materials for magnetic refrigeration at room temperature

Hai, Xueying 24 November 2016 (has links)
La réfrigération magnétique, basée sur l'effet magnétocalorique (EMC), est une alternative intéressante aux méthodes de réfrigération traditionnelles, basées sur des cycles de compression/détente, car elle présente des rendements énergétiques nettement plus élevés et permet d'éviter l'utilisation de gaz nocifs contribuant à l'effet de serre et problématiques pour l'environnement. Cette technologie s'appuie sur l’EMC géant de certains matériaux magnétiques autour de la température ambiante. Cet effet permet d'augmenter ou de diminuer la température du matériau lors de son aimantation ou désaimantation adiabatique autour de sa température de transition magnétique.La majeure partie des travaux de thèse se focalise sur la famille des matériaux de type La(Fe,Si)13 dans lesquels un effet magnétocalorique géant a été mis en évidence et pour lesquels la faisabilité industrielle semble la plus favorable. Dans un premier temps, les propriétés structurales et magnétiques de ces alliages sont explorées et optimisées, en remplaçant aussi bien la terre rare que le métal de transition par d'autres éléments. Les méthodes d’élaboration, des traitements thermiques, ainsi que le contrôle de la stœchiométrie sont guidées par les caractérisations structurales, microstructurales, physiques (thermiques et magnétiques).D’autre part, l'effet de l'insertion d'éléments interstitiels légers est également étudié et une grande partie du travail porte sur la détermination des conditions de stabilité de ces interstitiels dans les matériaux. Grâce à l'extension des distances Fe-Fe, la température de Curie de la phase magnétocalorique peut être augmentée jusqu'à des plages proches de latempérature ambiante. L'influence d’une faible concentration en carbone sur les propriétés magnétiques des échantillons est examinée avant hydrogénation et la teneur en carbone est optimisée.Afin d'étudier la diffusion des éléments interstitiels, la cinétique de sorption d'hydrogène est étudiée par la méthode de Sieverts ainsi que par diffraction neutronique. La diffraction neutronique in situ et à haute résolution permet une localisation des atomes interstitiels et donne accès au schéma d’insertion. Cette étude permet de préciser l’effet de l’insertion d’interstitiels légers et des substitutions d’éléments de terre rare sur la structure des alliages métalliques complexes de type La-Fe-Si. Nous montrons que la dépression ou l’accélération de la cinétique d'hydrogénation peut être liée à la variation hétérogène particulière de la maille et des liaisons dans la structure de type NaZn13. Un mécanisme pour le chemin de diffusion est suggéré.Le mécanisme d'insertion d'atomes légers est non seulement fortement lié à l'espace disponible, mais aussi associés à la facilité du chemin de diffusion dans le réseau. Nous démontrons avec des résultats expérimentaux qu'une addition modérée de carbone dans la phase La(Fe,Si)13 avant l'hydrogénation peut effectivement ralentir la cinétique d'insertion de l'hydrogène. Dans les phases La-Ce-Fe-Si, une insertion de carbone peut aider à retenir les atomes d'hydrogène lors de la désorption, par conséquent, offre une possibilité d'avoir une meilleure stabilité des matériaux hydrogénés pour des applications à long terme. La stabilité des matériaux hydrogénés est mesurée par DSC et une amélioration de la stabilité thermique du matériau est réalisée par un dopage au carbone.Un volet exploratoire est consacré aux alliages Fe-Cr-Ni et Fe-Cr-Mn qui pourraient potentiellement avoir un effet magnétocalorique exploitable. Les transitions magnétiques et structurales de ces alliages de compositions différentes sont étudiées et leur potentiel d'application magnétocalorique est discuté. / The magnetocaloric effect (MCE) is characterized by a magnetic entropy change and an adiabatic temperature change. The NaZn13-type La(Fe,Si)13 system has attracted wide interest because of its first-order ferromagnetic phase transition with a large magnetocaloric effect. The transition temperature can be flexibly adjusted through substitution or interstitial insertion. Particularly, hydrogen interstitials can adapt the temperature range to room-temperature applications. Precise adjustment can be achieved by full hydrogen absorption then partial desorption. However, fully hydrogenated alloys are unstable upon heating. It is important to have a better understanding of its hydrogen stability to optimize its application potential.In the first part, the structural, magnetic, and magnetocaloric properties of La(Fe,Si)13 phases are studied. In particular, we have investigated the effect of substitution of Ce on the La site and Mn on the Fe sites. The partial substitution of Ce results in the decrease of TC with decreasing lattice constant. At the same time, Ce substitution for La results in a reduced volume of the octahedral interstitial site due to steric effect. The interstitial insertion is impeded by Ce partial substitution.Secondly, the effects of interstitial atoms such as hydrogen and carbon are examined. These elements are able to enter the interstitial voids in the La(Fe,Si)13 phase, expanding the lattice. Through the extension of Fe-Fe distances, the Curie temperature of the magnetocaloric phase can be raised up to room temperature range. The influence of small concentration of carbon on the magnetic properties of samples is examined prior to hydrogenation and carbon content is optimized. In order to investigate the interstitial dynamics, the hydrogen sorption kinetics is studied by the means of Sieverts’ volumetric method and neutron diffraction. Particular attention has been given to the adjustment of the structure in the course of hydrogen/deuterium interstitial absorption and desorption.Steady-state and in-situ neutron diffractions provide precise information of the interstitial atom location of the sequential filling of the accommodating sites. The structural investigation allows specifying the deformations undergone in the complex metallic alloys La-Fe-Si when subjected to light interstitial insertion or rare earth substitution at the cation site. We show that the depression or enhancement of the hydrogenation kinetics may be related to the particular inhomogeneous cell variation of bonding in the structure. A mechanism for the diffusion path is suggested.The mechanism is light atom insertion into the interstitial sites is not only strongly related to the available space for accommodation, but also associated with the facility of the diffusion path in the lattice. We demonstrate with experimental results that a modest addition of carbon in the La-Fe-Si phase prior to hydrogenation can effectively slow down the hydrogen insertion kinetics. In Ce-substituted La-Ce-Fe-Si phases, carbon insertion can help retain hydrogen atoms during desorption, therefore, offering a prospect to have improved stability of hydrogenated materials for long-term applications. The hydrogen stability of the material is examined by means of thermal desorption in DSC and an enhancement of the thermal stability of the material is achieved with carbon-doping.Lastly, in the search of new rare-earth-free materials for magnetocaloric applications, we have explored the capacity of alloys of types FeCrNi and FeCrMn. The magnetic and structural transitions of these alloys of different compositions are studied and their potential for magnetocaloric application is examined in this thesis.
5

Etude des équilibres chimiques dans le contexte d'accrétion et de différenciation des planètes telluriques / Chemical equilibria during the accretion and differentiation of the terrestrial planets

Fontaine, Asmaa 23 May 2014 (has links)
Les abondances en éléments sidérophiles du manteau terrestre indiquent une ségrégation du noyau dans un océan magmatique profond. Il est néanmoins difficile de contraindre les conditions d’oxydation prévalant lors de l’accrétion planétaire, en se basant sur les traceurs géochimiques, en raison du nombre important de paramètres qui affectent leurs partages entre métal et silicate. D’autre part, l’état d’oxydation des planètes peut évoluer au cours de l’accrétion. Par conséquent, la nature des matériaux accrétés lors de la formation des planètes reste incertaine. Afin d’apporter de nouveaux éléments de réponses à cette problématique, nous avons modélisé les équilibres chimiques ayant lieu dans la Terre primitive. Ces équilibres peuvent évoluer (i) en augmentant les conditions de pression et de température de la ségrégation du noyau lors de la croissance de la planète, (ii) en raison de la cristallisation de l’océan magmatique et (iii) à travers l’accrétion de matériaux hétérogènes de compositions et états redox différents. Nous avons exploré le rôle potentiel de l’érosion collisionnelle dans le contexte de l’accrétion de la Terre à partir de chondrites à enstatite. Pour cela, nous avons déterminé expérimentalement les compositions chimiques des liquides pseudo-eutectiques en fonction de la pression jusqu’à 25 GPa. Nous avons montré que ces premiers liquides sont très enrichis en SiO2 (jusqu’à 75 wt% SiO2) et en éléments alcalins (Na et K). Par conséquent, l’érosion collisionnelle de proto-croutes de planétésimaux formés de chondrites EH peut de manière efficace augmenter le rapport final Mg/Si du manteau terrestre et réduire ses concentrations en éléments alcalins volatils. Ce mécanisme peut donc concilier les différences compositionnelles entre la Terre et les chondrites à enstatite. Nous avons également déterminé expérimentalement le partage du soufre entre métal riche en fer et silicate. La concentration en soufre du manteau terrestre peut être expliquée par un équilibre entre manteau et noyau dans un océan magmatique profond. L’hypothèse de l’ajout de soufre dans un vernis tardif (Rose-Weston et al., 2009) n’est pas à exclure, mais il n’est pas indispensable pour atteindre la concentration en soufre du manteau. Ces résultats sont en accord avec les compositions isotopiques non chondritiques du soufre dans le manteau (Labidi et al., 2013). Le partage des éléments légers (S, Si, O) entre manteau et noyau a été modélisé à hautes pressions et températures en prenant compte de leurs interactions chimiques mutuelles et celles avec le carbone. En considérant 2 wt% S et jusqu’à 1.2 wt% C (comme il est suggéré par les études cosmochimiques), nous trouvons une solubilité de l’O comprise entre 1 et 2.4 wt%. Cette insertion de l’O dans le noyau n’est pas suffisante pour permettre à la Terre d’être à la fois accrétée de matériaux météoritiques oxydés et de posséder un noyau métallique d’une masse équivalente au tiers de la planète ainsi que 8 wt% FeO dans le manteau. Des conditions relativement réduites lors de la ségrégation du noyau sont également requises pour augmenter le taux de Si dans le noyau et expliquer le rapport Mg/Si super-chondritique de la Terre silicatée (Allègre et al., 1995; O’Neill et al. 1998). Ainsi, la Terre s’est plus probablement accrétée à partir de matériaux réduits comme les chondrites à enstatites, conduisant à un noyau constitué de 2 wt% S, 0 à 1.2 wt% C, 1 wt% O et 5.5 à 7 wt% Si. Nous avons également exploré le comportement du Fe lors de la cristallisation de la pérovskite magnésienne (le minéral le plus abondant du manteau terrestre) et son rôle sur l’état redox du manteau terrestre lors du refroidissement de l’océan magmatique. Nous avons montré que sa cristallisation induit une diminution du FeO dans le manteau solide, lors d’un équilibre avec un alliage de fer liquide à une fO2 de IW-2 en raison du caractère incompatible du Fe dans la pérovskite. (...) / Abundances of siderophile elements in the mantle indicate that the Earth’s core segregated in a deep magma ocean. Yet, it is unfortunately difficult to constrain the oxidation conditions prevailing during planetary accretion based on geochemical tracers due to the number of parameters playing a role in metalsilicate partitioning. In addition, the oxidation state of terrestrial planets can evolve during accretion. The nature of the accreted material during the formation of the terrestrial planets remains then still uncertain. Our strategy to improve our knowledge in this domain is to model the chemical equilibria taking place in the primitive Earth. The equilibria can evolve (i) as P-T conditions of core-mantle segregation increase with the size of the planet, (ii) due to crystallization of the magma ocean and (iii) with accretion of heterogeneous material of different composition and oxidation state. We explored the potential role of collisional erosion in the context of Earth’s accretion from Enstatite Chondrites. For this, we refined experimentally the chemical composition of pseudo-eutectic melts as a function of pressure up to 25 GPa. We show that the first melts are highly enriched in SiO2 (up to 75 wt% SiO2) and alkali elements (Na and K). Therefore, collisional erosion of proto-crusts on EH-planetesimals can efficiently increase their final Mg/Si ratio and decrease their alkali elements budget. It can help to reconcile compositional differences between bulk silicate Earth and Enstatite Chondrites. We performed new experiments on metal-silicate partitioning of sulphur. We show that the present-day sulphur concentration of the Earth’s mantle can be explained by core-mantle equilibration in a deep magma ocean. S-addition in a late veneer (Rose-Weston et al., 2009) cannot be excluded; however, it is not required in order to reach the S-mantel abundance. Our results are consistent with the non-chondritic S-isotopic nature of the mantle (Labidi et al., 2013). We modeled the core-mantle partitioning of the light elements (S, Si, O) at high pressures and temperatures, by taking into account of their mutual chemical interactions and that with C. With 2 wt% S in the core and a C concentration ranging 0 to 1.2 wt% (as evidenced with cosmochemical studies), we found the O solubility from 1 to 2.4 wt%. This O incorporation to the core is insufficient to both allow an Earth accretion from an oxidized meteoritic material and result in a planet composed of a core with a mass equivalent to the third of its mass and a mantle with 8 wt% FeO content. Reduced conditions during coremantle segregation are also required to enhance the Si content in the core, possibly up to 5 wt% Si, to explain the super chondritic Mg/Si of the bulk silicated Earth (Allègre et al., 1995; O’Neill et al. 1998). Altogether, we find that the Earth was most likely accreted from a reduced material, such as enstatite chondrites, leading to a core composed of 2 wt% S, 0 to 1.1 wt% C, 1 wt% O and 5.5 to 7 wt% Si. We investigated the role of Mg-perovskite (the most abundant mineral of the mantle) crystallization on the oxidation state of Earth’s mantle during cooling of the magma ocean. We show that its crystallization induces a decrease of FeO content of the solid mantle as Fe is incompatible in perovskite, when it is in equilibrium with a liquid Fe-alloy at an fO2 of IW-2. At these conditions, the Fe3+ insertion is also low and constant (Fe3+/ Fetot of 21 ±4 %). Hence, the Mg-Pv crystallization cannot be responsible for a substantial increase of the Earth’s mantle oxygen fugacity during core segregation. (...)
6

Calcul de la réponse à la déformation et au champ électrique dans le formalisme "Projector Augmented-Wave". Application au calcul de vitesse du son de matériaux d'intérêt géophysique. / « Projector Augmented-Wave » formulation of response to strain and electric field perturbation within the DFPT. Application to the calculation of sound velocities in materials of geophysical interest.

Martin, Alexandre 06 November 2015 (has links)
La composition interne de notre planète est un vaste sujet d’étude auquel participent de nombreuses disciplines scientifiques. Les conditions extrêmes de pression et de température qui règnent à l’intérieur du noyau (constitué principalement de fer et de nickel) et du manteau terrestre (à base de pérovskites) rendent très difficile la détermination de leur compositions exactes. Ce projet de thèse contribue aux études récentes dont l’enjeu est de déterminer plus précisément le chimisme des minéraux présents. Il a pour objet le développement d’un outil de calcul des vitesses de propagation des ondes sismiques a l’aide d’une méthode fondée sur les simulations ab initio. Ces vitesses sont déduites du tenseur élastique complet, incluant la relaxation atomique et les modifications induites du champ cristallin. Nous utilisons l’approche de la théorie de perturbation de la fonctionnelle de la densité (DFPT) qui permet de s'affranchir des incertitudes numériques qu’impliquent les méthodes classiques basées sur des différences finies. Nous combinons cette approche avec le formalisme « Projector Augmented-Wave » (PAW) qui permet, avec un coût de calcul faible, de prendre en compte tous les électrons du système. Nous avons appliqué la méthode sur des matériaux du noyau et du manteau terrestre. Nous avons déterminé les effets de différents éléments légers (Si, S, C, O et H) sur les vitesses de propagation des ondes sismiques dans le fer pur ainsi que celui de l’aluminium dans la pérovskite MgSiO3. / The internal composition of our planet is a large topic of study and involves many scientific disciplines. The extreme conditions of pressure and temperature prevailing inside the core (consisting primarily of iron and nickel) and the mantle (consisting mainly of perovskites) make the determination of the exact compositions very difficult. This thesis contributes to recent studies whose aim is to determine more accurately the chemistry of these minerals. Its purpose is the development of a tool for the calculation of seismic wave velocities within methods based on ab-initio simulations. These velocities are calculated from the full elastic tensor, including the atomic relaxation and induced changes in the crystal field. We use the approach of the density functional perturbation theory (DFPT) to eliminate numerical uncertainties induced by conventional methods based on finite differences. We combine this approach with the « Projector Augmented-Wave » (PAW) formalism that takes into account all the electrons of the system with a low computational cost. We apply the method on core and mantle materials and we determine the effects of various lights elements (Si, S, C, O and H) on the seismic wave velocities of pure iron, as well as the effect of aluminum in the perovskite MgSiO3.
7

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 29 February 2012 (has links) (PDF)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.
8

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 21 December 2011 (has links)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

Page generated in 0.0793 seconds