• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of indium nitride films with swift ions and radioisotope probes

Shrestha, Santosh Kumar, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2005 (has links)
[Formulae and special characters can not be reproduced here. Please see the pdf version of the Abstract for an accurate reproduction.] Indium nitride is an important III-V nitride semiconductor with many potential applications such as in high frequency transistors, laser diodes and photo voltaic cells. The mobility and peak drift velocity of this material are predicted to be extremely high and superior to that of gallium nitride. However, many material properties such as the origin of the n-type conductivity and the electronic band gap are not well understood. Moreover, there is limited information on the stoichiometry and the level of impurity contaminations in the films from different growth techniques. The n-type conductivity observed for as-grown indium nitride films has long been attributed to nitrogen vacancies, implying that the material is nitrogen deficient. A band gap value around 2 eV, as measured by the optical absorption method, is suggested by some authors to be a result of the formation of an InNIn2O3 alloy. Alternatively, the observation of a lower absorption edge, suggesting a band gap around 0.7 eV, may be caused by Mie scattering at indium clusters that may form during film growth. Secondary ion mass spectroscopy and x-ray techniques provide only qualitative composition information. The quantitative interpretation of the results relies on calibration samples which are not available for indium nitride. In Rutherford backscattering spectroscopy, while quantitative, the carbon, nitrogen and oxygen signals cannot be separated unless the film is very thin ([tilde]150 nm). However, with heavy ion Elastic Recoil Detection (ERD) analysis all the elements in indium nitride films can be fully separated even for a film thickness of [tilde] 800 nm. In this work, indium nitride films from different growth techniques have been analysed with ERD using 200 MeV 197Au projectiles. The observed nitrogen depletion during the ERD analysis was monitored as a function of projectile fluence using a gas ionisation detector with a large solid angle. Different models have been tested and it has been shown that the bulk molecular recombination model accurately describes the nitrogen depletion so that the original nitrogen-to- indium ratio can be measured with an accuracy of [plus or minus]3 [percent]. The correlation of nitrogen depletion rate and stopping power of the projectile ion has been investigated. The study has shown that the rate of depletion is slower for low-Z projectiles. It has been shown that for a film with good structural properties, no loss of nitrogen occurs during the ERD analysis with low-Z projectiles such as 42 MeV 32S. Thus, the original nitrogen-to-indium ratio can be obtained without any theoretical modelling, and with a precision of better than [plus or minus]1 [percent]. All the indium nitride films studied in this work, for which X-ray diffraction shows no metallic indium, are nitrogen-rich which is contradictory to expectation. Therefore, the common assertion that nitrogen vacancies are the cause of n-type conductivity in as-grown films is diffcult to explain. Instead, the existence of In vacancies, N antisites and interstitial N2 may be speculated. The carbon and oxygen contamination is an issue for films grown by all common growth techniques. However, the suggested correlation of oxygen content in the film with the apparent band gap is not supported by the ERD results. Instead, a correlation between nitrogen-to-indium ratio and the measured band gap has been observed for films grown by RF-sputtering. This work reports the implantation of radioisotope probes using negative ions. The 111In/Cd probe was selected for this work as it is a common Perturbed Angular Correlation (PAC) probe and ideally suited for the study of indium nitride. For the synthesis of the probe 111In/Cd, several possibilities, such as the production of 111In/Cd via nuclear fusion evaporation reactions and from commercially available 111InCl3 solutions, were explored. Different materials, including powders of Al2O3 and In2O3, were investigated as a carrier for the probe in the ion source of the radioisotope implanter. It has been established that combining the 111InCl3 solution as the source and In2O3 powder as the carrier material gives optimum implantation efficiency. The radioisotope implanter facility has been developed to a stage that the radioisotope probe 111In/Cd can be routinely implanted into materials as molecular 111InO?? ions. An implantation rate of 3x10 4[th] Becquerel per hour has been demonstrated. Measurements on different materials (Ag, In, Ni, Si, InP) have shown that condensed matter spectroscopies such as Low Temperature Nuclear Orientation, Nuclear Magnetic Resonance on Oriented Nuclei (NMRON) and Perturbed Angular Correlation can be reliably performed. NMRON measurements on silver indicate a new resonance frequency of 75.08 MHz for 111InAg at 8.0 T. The local lattice environment of indium nitride thin films has been investigated with PAC spectroscopy. Several methods of introducing a radioisotope probe into a host material have been investigated for indium nitride. The thermal diffusion of the radioisotope probe 111In/Cd into indium nitride at a temperature below the dissociation temperature (about 550 [degrees] C) was not possible. The probe was, however, successfully introduced into indium nitride films with ion implantation techniques. Recoil implantation at MeV energies following fusion evaporation reactions and ion implantation at keV energies, both have been investigated for indium nitride films. An interaction frequency of v = 28 MHz has been measured for the 111In/Cd probe in indium nitride. This result is consistent with that obtained for indium nitride bulk grains. The PAC results suggest that all types of indium nitride films have a highly disordered lattice which could only be partially improved by annealing. Furnace annealing in nitrogen atmosphere above 400 [degrees] C resulted in the dissociation of the film. However, such dissociation could be avoided with rapid thermal annealing up to 600 [degrees] C. More detailed defect studies with PAC require the availability of better material. This study has also shown that indium nitride is highly sensitive to ion beam irradiation. Severe depletion of nitrogen during exposure to ions with MeV and KeV energies is an issue for the ion beam characterisation and processing of indium nitride.
2

Monte Carlo Simulation of Large Angle Scattering Effects in Heavy Ion Elastic Recoil Detection Analysis and Ion Transmission Through Nanoapertures.

Franich, Rick, rick.franich@rmit.edu.au January 2007 (has links)
Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is a versatile Ion Beam Analysis technique well suited to multi-elemental depth profiling of thin layered structures and near-surface regions of materials. An existing limitation is the inability to accurately account for the pronounced broadening and tailing effects of multiple scattering typically seen in HIERDA spectra. This thesis investigates the role of multiple large angle scattering in heavy ion applications such as HIERDA, and seeks to quantify its contribution to experimental output. This is achieved primarily by the development of a computer simulation capable of predicting these contributions and using it to classify and quantify the interactions that cause them. Monte Carlo ion transport simulation is used to generate simulated HIERDA spectra and the results are compared to experimental data acquired using the Time of Flight HIERDA facility at the Australian Nuclear Science and Technology Organisat ion. A Monte Carlo simulation code was adapted to the simulation of HIERDA spectra with considerable attention on improving the modelling efficiency to reduce processing time. Efficiency enhancements have achieved simulation time reductions of two to three orders of magnitude. The simulation is shown to satisfactorily reproduce the complex shape of HIERDA spectra. Some limitations are identified in the ability to accurately predict peak widths and the absolute magnitude of low energy tailing in some cases. The code is used to identify the plural scattering contribution to the spectral features under investigation, and the complexity of plurally scattered ion and recoil paths is demonstrated. The program is also shown to be useful in the interpretation of overlapped energy spectra of elements of similar mass whose signals cannot be reliably separated experimentally. The effect of large angle scattering on the transmission of heavy ions through a nano-scale aperture mask, used to collimate an ion beam to a very small beam spot, is modelled using a version of the program adapted to handle the more complex geometry of the aperture mask. The effectiveness of nano-aperture collimation was studied for a variety of ion-energy combinations. Intensity, energy, and angular distributions of transmitted ions were calculated to quantify the degree to which scattering within the mask limits the spatial resolution achievable. The simulation successfully predicted the effect of misaligning the aperture and the beam, and the result has subsequently been observed experimentally. Transmitted ion distributions showed that the higher energy heavier ions studied are more effectively collimated than are lower energy lighter ions. However, there is still a significant probability of transmission of heavy ions with substantial residual energy beyond the perimeter of the aperture. For the intended application, ion beam lithography, these ions are likely to be problematic. The results indicate that medium energy He ions are the more attractive option, as the residual energy of scattered transmitted ions can be more readily managed by customising the etching process. Continuing research by experimentalists working in this area is proceeding in this direction as a result of the conclusions from this work.
3

Characterisation of indium nitride films with swift ions and radioisotope probes

Shrestha, Santosh Kumar, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2005 (has links)
[Formulae and special characters can not be reproduced here. Please see the pdf version of the Abstract for an accurate reproduction.] Indium nitride is an important III-V nitride semiconductor with many potential applications such as in high frequency transistors, laser diodes and photo voltaic cells. The mobility and peak drift velocity of this material are predicted to be extremely high and superior to that of gallium nitride. However, many material properties such as the origin of the n-type conductivity and the electronic band gap are not well understood. Moreover, there is limited information on the stoichiometry and the level of impurity contaminations in the films from different growth techniques. The n-type conductivity observed for as-grown indium nitride films has long been attributed to nitrogen vacancies, implying that the material is nitrogen deficient. A band gap value around 2 eV, as measured by the optical absorption method, is suggested by some authors to be a result of the formation of an InNIn2O3 alloy. Alternatively, the observation of a lower absorption edge, suggesting a band gap around 0.7 eV, may be caused by Mie scattering at indium clusters that may form during film growth. Secondary ion mass spectroscopy and x-ray techniques provide only qualitative composition information. The quantitative interpretation of the results relies on calibration samples which are not available for indium nitride. In Rutherford backscattering spectroscopy, while quantitative, the carbon, nitrogen and oxygen signals cannot be separated unless the film is very thin ([tilde]150 nm). However, with heavy ion Elastic Recoil Detection (ERD) analysis all the elements in indium nitride films can be fully separated even for a film thickness of [tilde] 800 nm. In this work, indium nitride films from different growth techniques have been analysed with ERD using 200 MeV 197Au projectiles. The observed nitrogen depletion during the ERD analysis was monitored as a function of projectile fluence using a gas ionisation detector with a large solid angle. Different models have been tested and it has been shown that the bulk molecular recombination model accurately describes the nitrogen depletion so that the original nitrogen-to- indium ratio can be measured with an accuracy of [plus or minus]3 [percent]. The correlation of nitrogen depletion rate and stopping power of the projectile ion has been investigated. The study has shown that the rate of depletion is slower for low-Z projectiles. It has been shown that for a film with good structural properties, no loss of nitrogen occurs during the ERD analysis with low-Z projectiles such as 42 MeV 32S. Thus, the original nitrogen-to-indium ratio can be obtained without any theoretical modelling, and with a precision of better than [plus or minus]1 [percent]. All the indium nitride films studied in this work, for which X-ray diffraction shows no metallic indium, are nitrogen-rich which is contradictory to expectation. Therefore, the common assertion that nitrogen vacancies are the cause of n-type conductivity in as-grown films is diffcult to explain. Instead, the existence of In vacancies, N antisites and interstitial N2 may be speculated. The carbon and oxygen contamination is an issue for films grown by all common growth techniques. However, the suggested correlation of oxygen content in the film with the apparent band gap is not supported by the ERD results. Instead, a correlation between nitrogen-to-indium ratio and the measured band gap has been observed for films grown by RF-sputtering. This work reports the implantation of radioisotope probes using negative ions. The 111In/Cd probe was selected for this work as it is a common Perturbed Angular Correlation (PAC) probe and ideally suited for the study of indium nitride. For the synthesis of the probe 111In/Cd, several possibilities, such as the production of 111In/Cd via nuclear fusion evaporation reactions and from commercially available 111InCl3 solutions, were explored. Different materials, including powders of Al2O3 and In2O3, were investigated as a carrier for the probe in the ion source of the radioisotope implanter. It has been established that combining the 111InCl3 solution as the source and In2O3 powder as the carrier material gives optimum implantation efficiency. The radioisotope implanter facility has been developed to a stage that the radioisotope probe 111In/Cd can be routinely implanted into materials as molecular 111InO?? ions. An implantation rate of 3x10 4[th] Becquerel per hour has been demonstrated. Measurements on different materials (Ag, In, Ni, Si, InP) have shown that condensed matter spectroscopies such as Low Temperature Nuclear Orientation, Nuclear Magnetic Resonance on Oriented Nuclei (NMRON) and Perturbed Angular Correlation can be reliably performed. NMRON measurements on silver indicate a new resonance frequency of 75.08 MHz for 111InAg at 8.0 T. The local lattice environment of indium nitride thin films has been investigated with PAC spectroscopy. Several methods of introducing a radioisotope probe into a host material have been investigated for indium nitride. The thermal diffusion of the radioisotope probe 111In/Cd into indium nitride at a temperature below the dissociation temperature (about 550 [degrees] C) was not possible. The probe was, however, successfully introduced into indium nitride films with ion implantation techniques. Recoil implantation at MeV energies following fusion evaporation reactions and ion implantation at keV energies, both have been investigated for indium nitride films. An interaction frequency of v = 28 MHz has been measured for the 111In/Cd probe in indium nitride. This result is consistent with that obtained for indium nitride bulk grains. The PAC results suggest that all types of indium nitride films have a highly disordered lattice which could only be partially improved by annealing. Furnace annealing in nitrogen atmosphere above 400 [degrees] C resulted in the dissociation of the film. However, such dissociation could be avoided with rapid thermal annealing up to 600 [degrees] C. More detailed defect studies with PAC require the availability of better material. This study has also shown that indium nitride is highly sensitive to ion beam irradiation. Severe depletion of nitrogen during exposure to ions with MeV and KeV energies is an issue for the ion beam characterisation and processing of indium nitride.
4

Thermal Stability of Zr-Si-N Nanocomposite Hard Thin Films

Ku, Nai-Yuan January 2010 (has links)
<p>Mechanical property and thermal stability of Zr-Si-N films of varying silicon contents deposited on Al<sub>2</sub>O<sub>3</sub> (0001) substrates are characterized. All films provided for characterization were deposited by reactive DC magnetron sputter deposition technique from elemental Zr and Si targets in a N<sub>2</sub>/Ar plasma at 800 <sup>o</sup>C. The hardness and microstructures of the as deposited films and post-annealed films up to 1100 <sup>o</sup>C are evaluated by means of nanoindentation, X-ray diffractometry and transmission electron microscopy. The Zr-Si-N films with 9.4 at.% Si exhibit hardness as high as 34 GPa and a strong (002) texture within which vertically elongated ZrN crystallites are embedded in a Si<sub>3</sub>N<sub>4</sub> matrix. The hardness of these two dimensional nanocomposite films remains stable up to 1000 <sup>o</sup>C annealing temperatures which is in contrast to ZrN films where hardness degradation occurs already above 800 <sup>o</sup>C. The enhanced thermal stability is attributed to the presence of Si<sub>3</sub>N<sub>4</sub> grain boundaries which act as efficient barriers to hinder the oxygen diffusion. X-ray amorphous or nanocrystalline structures are observed in Zr-Si-N films with silicon contents > 13.4 at.%. After the annealing treatments, crystalline phases such as ZrSi<sub>2</sub>, ZrO<sub>2</sub> and Zr<sub>2</sub>O are formed above 1000 <sup>o</sup>C in the Si-containing films while only zirconia crystallites are observed at 800 <sup>o</sup>C in pure ZrN films because oxygen acts as artifacts in the vacuum furnace. The structural, compositional and hardness comparison of as-deposited and annealed films reveal that the addition of silicon enhances the thermal stability compared to pure ZrN films and the hardness degradation stems from the formation of oxides at elevated temperatures.</p>
5

Thermal Stability of Zr-Si-N Nanocomposite Hard Thin Films

Ku, Nai-Yuan January 2010 (has links)
Mechanical property and thermal stability of Zr-Si-N films of varying silicon contents deposited on Al2O3 (0001) substrates are characterized. All films provided for characterization were deposited by reactive DC magnetron sputter deposition technique from elemental Zr and Si targets in a N2/Ar plasma at 800 oC. The hardness and microstructures of the as deposited films and post-annealed films up to 1100 oC are evaluated by means of nanoindentation, X-ray diffractometry and transmission electron microscopy. The Zr-Si-N films with 9.4 at.% Si exhibit hardness as high as 34 GPa and a strong (002) texture within which vertically elongated ZrN crystallites are embedded in a Si3N4 matrix. The hardness of these two dimensional nanocomposite films remains stable up to 1000 oC annealing temperatures which is in contrast to ZrN films where hardness degradation occurs already above 800 oC. The enhanced thermal stability is attributed to the presence of Si3N4 grain boundaries which act as efficient barriers to hinder the oxygen diffusion. X-ray amorphous or nanocrystalline structures are observed in Zr-Si-N films with silicon contents &gt; 13.4 at.%. After the annealing treatments, crystalline phases such as ZrSi2, ZrO2 and Zr2O are formed above 1000 oC in the Si-containing films while only zirconia crystallites are observed at 800 oC in pure ZrN films because oxygen acts as artifacts in the vacuum furnace. The structural, compositional and hardness comparison of as-deposited and annealed films reveal that the addition of silicon enhances the thermal stability compared to pure ZrN films and the hardness degradation stems from the formation of oxides at elevated temperatures.
6

Material migration in tokamaks : Erosion-deposition patterns and transport processes

Weckmann, Armin January 2017 (has links)
Controlled thermonuclear fusion may become an attractive future electrical power source. The most promising of all fusion machine concepts is called a tokamak. The fuel, a plasma made of deuterium and tritium, must be confined to enable the fusion process. It is also necessary to protect the wall of tokamaks from erosion by the hot plasma. To increase wall lifetime, the high-Z metal tungsten is foreseen as wall material in future fusion devices due to its very high melting point. This thesis focuses on the following consequences of plasma impact on a high-Z wall: (i) erosion, transport and deposition of high-Z wall materials; (ii) fuel retention in tokamak walls; (iii) long term effects of plasma impact on structural machine parts; (iv) dust production in tokamaks. An extensive study of wall components has been conducted with ion beam analysis after the final shutdown of the TEXTOR tokamak. This unique possibility offered by the shutdown combined with a tracer experiment led to the largest study of high-Z metal migration and fuel retention ever conducted. The most important results are:   - transport is greatly affected by drifts and flows in the plasma edge; - stepwise transport along wall surfaces takes place mainly in the toroidal direction; - fuel retention is highest on slightly retracted wall elements; - fuel retention is highly inhomogeneous.   A broad study on structural parts of a tokamak has been conducted on the TEXTOR liner. The plasma impact does neither degrade mechanical properties nor lead to fuel diffusion into the bulk after 26 years of duty time. Peeling deposition layers on the liner retain fuel in the order of 1g and represent a dust source. Only small amounts of dust are found in TEXTOR with overall low deuterium content. Security risks in future fusion devices due to dust explosions or fuel retention in dust are hence of lesser concern. / <p>QC 20170630</p>
7

Estudos de técnicas de feixes iônicos para a quantificação do elemento químico boro / Study of boron quantification using ion beam analysis techniques.

Moro, Marcos Vinicius 16 May 2013 (has links)
Neste trabalho, estudamos e aplicamos técnicas analíticas com feixes iônicos para a identificação e quantificação do elemento químico Boro em amostras de Boro depositado sobre Níquel 11B/Ni, sobre Silício B/Si e em amostras de Silício Grau Metalúrgico - SiGM. Estas últimas foram fornecidas pelo grupo de metalurgia do Instituto de Pesquisas Tecnológicas (IPT). Especificamente, as seguintes técnicas analíticas foram utilizadas: Nuclear Reaction Analysis - NRA, Elastic Recoil Detection Analysis - ERDA e Secondary Ion Mass Spectrometry - SIMS. Nas amostras de B/Ni e B/Si, as concentrações foram obtidas com medidas de NRA, ERDA e SIMS. Também foi abordado quais dentre essas três técnicas apresentam menor limite de deteção e menor incerteza para a quantificação de Boro. Usando a reação nuclear 11B(p,a0)8Be, foi possível calcular a sua seção de choque diferencial para ângulo de espalhamento theta=170, cujo resultado, para este ângulo específico, é inédito na literatura. As amostras de SiGM foram analisadas com a técnica SIMS e comparadas com medidas de Inductively Coupled Plasma - ICP realizadas pelo grupo do IPT. Uma vez que técnicas nucleares podem ser consideradas absolutas, concluímos que as medidas de ICP apresentaram dados compatíveis com as medidas SIMS, e que o grupo de metalurgia do IPT está medindo as concentrações de Boro em suas amostras de SiGM corretamente por meio de ICP. Uma reta de calibração entre medidas SIMSxICP foi construída, que poderá servir como um guia para futuras quantificações de Boro com ICP feitas pelo grupo de metalurgia do IPT. / In this work we investigated the use of analytical techniques based on ion beams in the quantification of Boron in many kinds of samples. Specifically, we applied techniques such Nuclear Reaction Analysis (NRA), Elastic Recoil Detection Analysis (ERDA) and Secondary Ion Mass Spectrometry (SIMS) to 11B/Ni and B/Si samples to measure the boron concentration. We also discuss and show what technique has a better detection limit and lower uncertainty. For the first time in the literature, we obtained the cross section for the $^{11}B(p,\\alpha_0){^8}Be$ nuclear reaction in the energy range from 1.6 up to 2.0 MeV in theta = 170 scattering angle. The SIMS technique was applied to analise samples of metallurgical grade silicon (SiGM) from Metallurgy Group of Instituto de Pesquisas Tecnologicas (IPT) to check the Inductively Coupled Plasma (ICP) measurements carried out by the IPT. Moreover, it was possible to build a calibration curve between SIMS and ICP measurements, that can be used to help of Metallurgy Group with futures ICP\'s measurements.
8

Estudos de técnicas de feixes iônicos para a quantificação do elemento químico boro / Study of boron quantification using ion beam analysis techniques.

Marcos Vinicius Moro 16 May 2013 (has links)
Neste trabalho, estudamos e aplicamos técnicas analíticas com feixes iônicos para a identificação e quantificação do elemento químico Boro em amostras de Boro depositado sobre Níquel 11B/Ni, sobre Silício B/Si e em amostras de Silício Grau Metalúrgico - SiGM. Estas últimas foram fornecidas pelo grupo de metalurgia do Instituto de Pesquisas Tecnológicas (IPT). Especificamente, as seguintes técnicas analíticas foram utilizadas: Nuclear Reaction Analysis - NRA, Elastic Recoil Detection Analysis - ERDA e Secondary Ion Mass Spectrometry - SIMS. Nas amostras de B/Ni e B/Si, as concentrações foram obtidas com medidas de NRA, ERDA e SIMS. Também foi abordado quais dentre essas três técnicas apresentam menor limite de deteção e menor incerteza para a quantificação de Boro. Usando a reação nuclear 11B(p,a0)8Be, foi possível calcular a sua seção de choque diferencial para ângulo de espalhamento theta=170, cujo resultado, para este ângulo específico, é inédito na literatura. As amostras de SiGM foram analisadas com a técnica SIMS e comparadas com medidas de Inductively Coupled Plasma - ICP realizadas pelo grupo do IPT. Uma vez que técnicas nucleares podem ser consideradas absolutas, concluímos que as medidas de ICP apresentaram dados compatíveis com as medidas SIMS, e que o grupo de metalurgia do IPT está medindo as concentrações de Boro em suas amostras de SiGM corretamente por meio de ICP. Uma reta de calibração entre medidas SIMSxICP foi construída, que poderá servir como um guia para futuras quantificações de Boro com ICP feitas pelo grupo de metalurgia do IPT. / In this work we investigated the use of analytical techniques based on ion beams in the quantification of Boron in many kinds of samples. Specifically, we applied techniques such Nuclear Reaction Analysis (NRA), Elastic Recoil Detection Analysis (ERDA) and Secondary Ion Mass Spectrometry (SIMS) to 11B/Ni and B/Si samples to measure the boron concentration. We also discuss and show what technique has a better detection limit and lower uncertainty. For the first time in the literature, we obtained the cross section for the $^{11}B(p,\\alpha_0){^8}Be$ nuclear reaction in the energy range from 1.6 up to 2.0 MeV in theta = 170 scattering angle. The SIMS technique was applied to analise samples of metallurgical grade silicon (SiGM) from Metallurgy Group of Instituto de Pesquisas Tecnologicas (IPT) to check the Inductively Coupled Plasma (ICP) measurements carried out by the IPT. Moreover, it was possible to build a calibration curve between SIMS and ICP measurements, that can be used to help of Metallurgy Group with futures ICP\'s measurements.
9

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 29 February 2012 (has links) (PDF)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.
10

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 21 December 2011 (has links)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

Page generated in 0.1005 seconds